[ 
https://issues.apache.org/jira/browse/SPARK-19416?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15852876#comment-15852876
 ] 

koert kuipers commented on SPARK-19416:
---------------------------------------

would it be simpler to ban columns with a period in the name?

> Dataset.schema is inconsistent with Dataset in handling columns with periods
> ----------------------------------------------------------------------------
>
>                 Key: SPARK-19416
>                 URL: https://issues.apache.org/jira/browse/SPARK-19416
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 1.6.3, 2.0.2, 2.1.0, 2.2.0
>            Reporter: Joseph K. Bradley
>            Priority: Minor
>
> When you have a DataFrame with a column with a period in its name, the API is 
> inconsistent about how to quote the column name.
> Here's a reproduction:
> {code}
> import org.apache.spark.sql.functions.col
> val rows = Seq(
>   ("foo", 1),
>   ("bar", 2)
> )
> val df = spark.createDataFrame(rows).toDF("a.b", "id")
> {code}
> These methods are all consistent:
> {code}
> df.select("a.b")     // fails
> df.select("`a.b`")     // succeeds
> df.select(col("a.b"))     // fails
> df.select(col("`a.b`"))     // succeeds
> df("a.b")     // fails
> df("`a.b`")     // succeeds
> {code}
> But {{schema}} is inconsistent:
> {code}
> df.schema("a.b")     // succeeds
> df.schema("`a.b`")     // fails
> {code}
> "fails" produces error messages like:
> {code}
> org.apache.spark.sql.AnalysisException: cannot resolve '`a.b`' given input 
> columns: [a.b, id];;
> 'Project ['a.b]
> +- Project [_1#1511 AS a.b#1516, _2#1512 AS id#1517]
>    +- LocalRelation [_1#1511, _2#1512]
>       at 
> org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
>       at 
> org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:77)
>       at 
> org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:74)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:310)
>       at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:309)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:282)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:292)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:296)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:296)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$7.apply(QueryPlan.scala:301)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:301)
>       at 
> org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:74)
>       at 
> org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:128)
>       at 
> org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:57)
>       at 
> org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:48)
>       at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63)
>       at 
> org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2822)
>       at org.apache.spark.sql.Dataset.select(Dataset.scala:1121)
>       at org.apache.spark.sql.Dataset.select(Dataset.scala:1139)
>       at 
> line9667c6d14e79417280e5882aa52e0de727.$read$$iw$$iw$$iw$$iw.<init>(<console>:34)
>       at 
> line9667c6d14e79417280e5882aa52e0de727.$read$$iw$$iw$$iw.<init>(<console>:41)
>       at 
> line9667c6d14e79417280e5882aa52e0de727.$read$$iw$$iw.<init>(<console>:43)
>       at line9667c6d14e79417280e5882aa52e0de727.$read$$iw.<init>(<console>:45)
>       at 
> line9667c6d14e79417280e5882aa52e0de727.$eval$.$print$lzycompute(<console>:7)
>       at line9667c6d14e79417280e5882aa52e0de727.$eval$.$print(<console>:6)
> {code}
> "succeeds" produces:
> {code}
> org.apache.spark.sql.DataFrame = [a.b: string]
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to