[ https://issues.apache.org/jira/browse/SPARK-13450?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15863275#comment-15863275 ]
Apache Spark commented on SPARK-13450: -------------------------------------- User 'tejasapatil' has created a pull request for this issue: https://github.com/apache/spark/pull/16909 > SortMergeJoin will OOM when join rows have lot of same keys > ----------------------------------------------------------- > > Key: SPARK-13450 > URL: https://issues.apache.org/jira/browse/SPARK-13450 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 1.6.0, 2.0.2, 2.1.0 > Reporter: Hong Shen > Attachments: heap-dump-analysis.png > > > When I run a sql with join, task throw java.lang.OutOfMemoryError and sql > failed. I have set spark.executor.memory 4096m. > SortMergeJoin use a ArrayBuffer[InternalRow] to store bufferedMatches, if > the join rows have a lot of same key, it will throw OutOfMemoryError. > {code} > /** Buffered rows from the buffered side of the join. This is empty if > there are no matches. */ > private[this] val bufferedMatches: ArrayBuffer[InternalRow] = new > ArrayBuffer[InternalRow] > {code} > Here is the stackTrace: > {code} > org.xerial.snappy.SnappyNative.arrayCopy(Native Method) > org.xerial.snappy.Snappy.arrayCopy(Snappy.java:84) > org.xerial.snappy.SnappyInputStream.rawRead(SnappyInputStream.java:190) > org.xerial.snappy.SnappyInputStream.read(SnappyInputStream.java:163) > java.io.DataInputStream.readFully(DataInputStream.java:195) > java.io.DataInputStream.readLong(DataInputStream.java:416) > org.apache.spark.util.collection.unsafe.sort.UnsafeSorterSpillReader.loadNext(UnsafeSorterSpillReader.java:71) > org.apache.spark.util.collection.unsafe.sort.UnsafeSorterSpillMerger$2.loadNext(UnsafeSorterSpillMerger.java:79) > org.apache.spark.sql.execution.UnsafeExternalRowSorter$1.next(UnsafeExternalRowSorter.java:136) > org.apache.spark.sql.execution.UnsafeExternalRowSorter$1.next(UnsafeExternalRowSorter.java:123) > org.apache.spark.sql.execution.RowIteratorFromScala.advanceNext(RowIterator.scala:84) > org.apache.spark.sql.execution.joins.SortMergeJoinScanner.advancedBufferedToRowWithNullFreeJoinKey(SortMergeJoin.scala:300) > org.apache.spark.sql.execution.joins.SortMergeJoinScanner.bufferMatchingRows(SortMergeJoin.scala:329) > org.apache.spark.sql.execution.joins.SortMergeJoinScanner.findNextInnerJoinRows(SortMergeJoin.scala:229) > org.apache.spark.sql.execution.joins.SortMergeJoin$$anonfun$doExecute$1$$anon$1.advanceNext(SortMergeJoin.scala:105) > org.apache.spark.sql.execution.RowIteratorToScala.hasNext(RowIterator.scala:68) > scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:88) > org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86) > org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:741) > org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:741) > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:337) > org.apache.spark.rdd.RDD.iterator(RDD.scala:301) > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:337) > org.apache.spark.rdd.RDD.iterator(RDD.scala:301) > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) > org.apache.spark.scheduler.Task.run(Task.scala:89) > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:215) > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > java.lang.Thread.run(Thread.java:744) > {code} -- This message was sent by Atlassian JIRA (v6.3.15#6346) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org