[ https://issues.apache.org/jira/browse/SPARK-19145?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Apache Spark reassigned SPARK-19145: ------------------------------------ Assignee: Apache Spark > Timestamp to String casting is slowing the query significantly > -------------------------------------------------------------- > > Key: SPARK-19145 > URL: https://issues.apache.org/jira/browse/SPARK-19145 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 2.1.0 > Reporter: gagan taneja > Assignee: Apache Spark > > i have a time series table with timestamp column > Following query > SELECT COUNT(*) AS `count` > FROM `default`.`table` > WHERE `time` >= '2017-01-02 19:53:51' > AND `time` <= '2017-01-09 19:53:51' LIMIT 50000 > is significantly SLOWER than > SELECT COUNT(*) AS `count` > FROM `default`.`table` > WHERE `time` >= to_utc_timestamp('2017-01-02 19:53:51','YYYY-MM-DD > HH24:MI:SS−0800') > AND `time` <= to_utc_timestamp('2017-01-09 19:53:51','YYYY-MM-DD > HH24:MI:SS−0800') LIMIT 50000 > After investigation i found that in the first query time colum is cast to > String before applying the filter > However in the second query no such casting is performed and its a filter > with long value > Below are the generate Physical plan for slower execution followed by > physical plan for faster execution > SELECT COUNT(*) AS `count` > FROM `default`.`table` > WHERE `time` >= '2017-01-02 19:53:51' > AND `time` <= '2017-01-09 19:53:51' LIMIT 50000 > == Physical Plan == > CollectLimit 50000 > +- *HashAggregate(keys=[], functions=[count(1)], output=[count#3290L]) > +- Exchange SinglePartition > +- *HashAggregate(keys=[], functions=[partial_count(1)], > output=[count#3339L]) > +- *Project > +- *Filter ((isnotnull(time#3314) && (cast(time#3314 as string) > >= 2017-01-02 19:53:51)) && (cast(time#3314 as string) <= 2017-01-09 > 19:53:51)) > +- *FileScan parquet default.cstat[time#3314] Batched: true, > Format: Parquet, Location: > InMemoryFileIndex[hdfs://10.65.55.220/user/spark/spark-warehouse/cstat], > PartitionFilters: [], PushedFilters: [IsNotNull(time)], ReadSchema: > struct<time:timestamp> > SELECT COUNT(*) AS `count` > FROM `default`.`table` > WHERE `time` >= to_utc_timestamp('2017-01-02 19:53:51','YYYY-MM-DD > HH24:MI:SS−0800') > AND `time` <= to_utc_timestamp('2017-01-09 19:53:51','YYYY-MM-DD > HH24:MI:SS−0800') LIMIT 50000 > == Physical Plan == > CollectLimit 50000 > +- *HashAggregate(keys=[], functions=[count(1)], output=[count#3238L]) > +- Exchange SinglePartition > +- *HashAggregate(keys=[], functions=[partial_count(1)], > output=[count#3287L]) > +- *Project > +- *Filter ((isnotnull(time#3262) && (time#3262 >= > 1483404831000000)) && (time#3262 <= 1484009631000000)) > +- *FileScan parquet default.cstat[time#3262] Batched: true, > Format: Parquet, Location: > InMemoryFileIndex[hdfs://10.65.55.220/user/spark/spark-warehouse/cstat], > PartitionFilters: [], PushedFilters: [IsNotNull(time), > GreaterThanOrEqual(time,2017-01-02 19:53:51.0), > LessThanOrEqual(time,2017-01-09..., ReadSchema: struct<time:timestamp> > In Impala both query run efficiently without and performance difference > Spark should be able to parse the Date string and convert to Long/Timestamp > during generation of Optimized Logical Plan so that both the query would have > similar performance -- This message was sent by Atlassian JIRA (v6.3.15#6346) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org