[ 
https://issues.apache.org/jira/browse/SPARK-19145?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-19145:
------------------------------------

    Assignee: Apache Spark

> Timestamp to String casting is slowing the query significantly
> --------------------------------------------------------------
>
>                 Key: SPARK-19145
>                 URL: https://issues.apache.org/jira/browse/SPARK-19145
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.1.0
>            Reporter: gagan taneja
>            Assignee: Apache Spark
>
> i have a time series table with timestamp column 
> Following query
> SELECT COUNT(*) AS `count`
>                FROM `default`.`table`
>                WHERE `time` >= '2017-01-02 19:53:51'
> AND `time` <= '2017-01-09 19:53:51' LIMIT 50000
> is significantly SLOWER than 
> SELECT COUNT(*) AS `count`
> FROM `default`.`table`
> WHERE `time` >= to_utc_timestamp('2017-01-02 19:53:51','YYYY-MM-DD 
> HH24:MI:SS−0800')
>   AND `time` <= to_utc_timestamp('2017-01-09 19:53:51','YYYY-MM-DD 
> HH24:MI:SS−0800') LIMIT 50000
> After investigation i found that in the first query time colum is cast to 
> String before applying the filter 
> However in the second query no such casting is performed and its a filter 
> with long value 
> Below are the generate Physical plan for slower execution followed by 
> physical plan for faster execution 
> SELECT COUNT(*) AS `count`
>                FROM `default`.`table`
>                WHERE `time` >= '2017-01-02 19:53:51'
> AND `time` <= '2017-01-09 19:53:51' LIMIT 50000
> == Physical Plan ==
> CollectLimit 50000
> +- *HashAggregate(keys=[], functions=[count(1)], output=[count#3290L])
>    +- Exchange SinglePartition
>       +- *HashAggregate(keys=[], functions=[partial_count(1)], 
> output=[count#3339L])
>          +- *Project
>             +- *Filter ((isnotnull(time#3314) && (cast(time#3314 as string) 
> >= 2017-01-02 19:53:51)) && (cast(time#3314 as string) <= 2017-01-09 
> 19:53:51))
>                +- *FileScan parquet default.cstat[time#3314] Batched: true, 
> Format: Parquet, Location: 
> InMemoryFileIndex[hdfs://10.65.55.220/user/spark/spark-warehouse/cstat], 
> PartitionFilters: [], PushedFilters: [IsNotNull(time)], ReadSchema: 
> struct<time:timestamp>
> SELECT COUNT(*) AS `count`
> FROM `default`.`table`
> WHERE `time` >= to_utc_timestamp('2017-01-02 19:53:51','YYYY-MM-DD 
> HH24:MI:SS−0800')
>   AND `time` <= to_utc_timestamp('2017-01-09 19:53:51','YYYY-MM-DD 
> HH24:MI:SS−0800') LIMIT 50000
> == Physical Plan ==
> CollectLimit 50000
> +- *HashAggregate(keys=[], functions=[count(1)], output=[count#3238L])
>    +- Exchange SinglePartition
>       +- *HashAggregate(keys=[], functions=[partial_count(1)], 
> output=[count#3287L])
>          +- *Project
>             +- *Filter ((isnotnull(time#3262) && (time#3262 >= 
> 1483404831000000)) && (time#3262 <= 1484009631000000))
>                +- *FileScan parquet default.cstat[time#3262] Batched: true, 
> Format: Parquet, Location: 
> InMemoryFileIndex[hdfs://10.65.55.220/user/spark/spark-warehouse/cstat], 
> PartitionFilters: [], PushedFilters: [IsNotNull(time), 
> GreaterThanOrEqual(time,2017-01-02 19:53:51.0), 
> LessThanOrEqual(time,2017-01-09..., ReadSchema: struct<time:timestamp>
> In Impala both query run efficiently without and performance difference
> Spark should be able to parse the Date string and convert to Long/Timestamp 
> during generation of Optimized Logical Plan so that both the query would have 
> similar performance



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to