Wayne Zhang created SPARK-20574: ----------------------------------- Summary: Allow Bucketizer to handle non-Double column Key: SPARK-20574 URL: https://issues.apache.org/jira/browse/SPARK-20574 Project: Spark Issue Type: Bug Components: ML Affects Versions: 2.1.0 Reporter: Wayne Zhang
Bucketizer currently requires input column to be Double, but the logic should work on any numeric data types. Many practical problems have integer/float data types, and it could get very tedious to manually cast them into Double before calling bucketizer. This transformer could be extended to handle all numeric types. The example below shows failure of Bucketizer on integer data. {code} val splits = Array(-3.0, 0.0, 3.0) val data: Array[Int] = Array(-2, -1, 0, 1, 2) val expectedBuckets = Array(0.0, 0.0, 1.0, 1.0, 1.0) val dataFrame = data.zip(expectedBuckets).toSeq.toDF("feature", "expected") val bucketizer = new Bucketizer() .setInputCol("feature") .setOutputCol("result") .setSplits(splits) bucketizer.transform(dataFrame) java.lang.IllegalArgumentException: requirement failed: Column feature must be of type DoubleType but was actually IntegerType. {code} -- This message was sent by Atlassian JIRA (v6.3.15#6346) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org