[ https://issues.apache.org/jira/browse/SPARK-20588?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Sean Owen updated SPARK-20588: ------------------------------ Issue Type: Improvement (was: Bug) > from_utc_timestamp causes bottleneck > ------------------------------------ > > Key: SPARK-20588 > URL: https://issues.apache.org/jira/browse/SPARK-20588 > Project: Spark > Issue Type: Improvement > Components: SQL > Affects Versions: 2.0.2 > Environment: AWS EMR AMI 5.2.1 > Reporter: Ameen Tayyebi > > We have a SQL query that makes use of the from_utc_timestamp function like > so: from_utc_timestamp(itemSigningTime,'America/Los_Angeles') > This causes a major bottleneck. Our exact call is: > date_add(from_utc_timestamp(itemSigningTime,'America/Los_Angeles'), 1) > Switching from the above to date_add(itemSigningTime, 1) reduces the job > running time from 40 minutes to 9. > When from_utc_timestamp function is used, several threads in the executors > are in the BLOCKED state, on this call stack: > "Executor task launch worker-63" #261 daemon prio=5 os_prio=0 > tid=0x00007f848472e000 nid=0x4294 waiting for monitor entry > [0x00007f501981c000] > java.lang.Thread.State: BLOCKED (on object monitor) > at java.util.TimeZone.getTimeZone(TimeZone.java:516) > - waiting to lock <0x00007f5216c2aa58> (a java.lang.Class for > java.util.TimeZone) > at > org.apache.spark.sql.catalyst.util.DateTimeUtils$.stringToTimestamp(DateTimeUtils.scala:356) > at > org.apache.spark.sql.catalyst.util.DateTimeUtils.stringToTimestamp(DateTimeUtils.scala) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithKeys$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown > Source) > at > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at > org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) > at > org.apache.spark.shuffle.sort.UnsafeShuffleWriter.write(UnsafeShuffleWriter.java:161) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47) > at org.apache.spark.scheduler.Task.run(Task.scala:86) > at > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Can we cache the locale's once per JVM so that we don't do this for every > record? -- This message was sent by Atlassian JIRA (v6.3.15#6346) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org