[ 
https://issues.apache.org/jira/browse/SPARK-20588?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Sean Owen updated SPARK-20588:
------------------------------
    Issue Type: Improvement  (was: Bug)

> from_utc_timestamp causes bottleneck
> ------------------------------------
>
>                 Key: SPARK-20588
>                 URL: https://issues.apache.org/jira/browse/SPARK-20588
>             Project: Spark
>          Issue Type: Improvement
>          Components: SQL
>    Affects Versions: 2.0.2
>         Environment: AWS EMR AMI 5.2.1
>            Reporter: Ameen Tayyebi
>
> We have a SQL query that makes use of the from_utc_timestamp function like 
> so: from_utc_timestamp(itemSigningTime,'America/Los_Angeles')
> This causes a major bottleneck. Our exact call is:
> date_add(from_utc_timestamp(itemSigningTime,'America/Los_Angeles'), 1)
> Switching from the above to date_add(itemSigningTime, 1) reduces the job 
> running time from 40 minutes to 9.
> When from_utc_timestamp function is used, several threads in the executors 
> are in the BLOCKED state, on this call stack:
> "Executor task launch worker-63" #261 daemon prio=5 os_prio=0 
> tid=0x00007f848472e000 nid=0x4294 waiting for monitor entry 
> [0x00007f501981c000]
>    java.lang.Thread.State: BLOCKED (on object monitor)
>         at java.util.TimeZone.getTimeZone(TimeZone.java:516)
>         - waiting to lock <0x00007f5216c2aa58> (a java.lang.Class for 
> java.util.TimeZone)
>         at 
> org.apache.spark.sql.catalyst.util.DateTimeUtils$.stringToTimestamp(DateTimeUtils.scala:356)
>         at 
> org.apache.spark.sql.catalyst.util.DateTimeUtils.stringToTimestamp(DateTimeUtils.scala)
>         at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithKeys$(Unknown
>  Source)
>         at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
>  Source)
>         at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>         at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
>         at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
>         at 
> org.apache.spark.shuffle.sort.UnsafeShuffleWriter.write(UnsafeShuffleWriter.java:161)
>         at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
>         at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
>         at org.apache.spark.scheduler.Task.run(Task.scala:86)
>         at 
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>   at java.lang.Thread.run(Thread.java:745)
> Can we cache the locale's once per JVM so that we don't do this for every 
> record?



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to