[ 
https://issues.apache.org/jira/browse/SPARK-18105?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16023980#comment-16023980
 ] 

Rupesh Mane commented on SPARK-18105:
-------------------------------------

For the stack provided earlier, I found the root cause: Issue is in Executor 
while getting compressed Broadcast variable. I'm specifying 
*spark.io.compression.codec* as *snappy*. So both driver and executors should 
be using this codec to compress and uncompress broadcast variable. But it seems 
like executor is defaulting to LZ4 instead of Snappy.

I'm not seeing this on my dev environment which is on Spark 2.1.1. While I am 
seeing this problem on AWS EMR 5.5.0 which has Spark 2.1.0. Not sure if this is 
related to AWS or Spark.

Thanks - Rupesh



> LZ4 failed to decompress a stream of shuffled data
> --------------------------------------------------
>
>                 Key: SPARK-18105
>                 URL: https://issues.apache.org/jira/browse/SPARK-18105
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core
>            Reporter: Davies Liu
>            Assignee: Davies Liu
>
> When lz4 is used to compress the shuffle files, it may fail to decompress it 
> as "stream is corrupt"
> {code}
> Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: 
> Task 92 in stage 5.0 failed 4 times, most recent failure: Lost task 92.3 in 
> stage 5.0 (TID 16616, 10.0.27.18): java.io.IOException: Stream is corrupted
>       at 
> org.apache.spark.io.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:220)
>       at 
> org.apache.spark.io.LZ4BlockInputStream.available(LZ4BlockInputStream.java:109)
>       at java.io.BufferedInputStream.read(BufferedInputStream.java:353)
>       at java.io.DataInputStream.read(DataInputStream.java:149)
>       at com.google.common.io.ByteStreams.read(ByteStreams.java:828)
>       at com.google.common.io.ByteStreams.readFully(ByteStreams.java:695)
>       at 
> org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:127)
>       at 
> org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:110)
>       at scala.collection.Iterator$$anon$13.next(Iterator.scala:372)
>       at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>       at 
> org.apache.spark.util.CompletionIterator.next(CompletionIterator.scala:30)
>       at 
> org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43)
>       at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>       at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.sort_addToSorter$(Unknown
>  Source)
>       at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
>  Source)
>       at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>       at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
>       at 
> org.apache.spark.sql.execution.datasources.DynamicPartitionWriterContainer.writeRows(WriterContainer.scala:397)
>       at 
> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143)
>       at 
> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
>       at org.apache.spark.scheduler.Task.run(Task.scala:86)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>       at java.lang.Thread.run(Thread.java:745)
> {code}
> https://github.com/jpountz/lz4-java/issues/89



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to