[ https://issues.apache.org/jira/browse/SPARK-19809?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16027476#comment-16027476 ]
Dongjoon Hyun edited comment on SPARK-19809 at 5/27/17 4:18 PM: ---------------------------------------------------------------- [~hyukjin.kwon]. I don't think so. Parquet file does not need `spark.sql.files.ignoreCorruptFiles` option. {code} scala> sql("create table empty_parquet(a int) stored as parquet location '/tmp/empty_parquet'").show ++ || ++ ++ $ touch /tmp/empty_parquet/zero.parquet scala> sql("select * from empty_parquet").show +---+ | a| +---+ +---+ {code} You can test this in Spark with SPARK-20728. {code} scala> sql("create table empty_orc2(a int) using orc location '/tmp/empty_orc'").show ++ || ++ ++ scala> sql("select * from empty_orc2").show +---+ | a| +---+ +---+ {code} I think this is a part of SPARK-20901. And ORC community will handle this. What we need is just to use latest ORC. One thing I'm wondering is this is tracked in https://issues.apache.org/jira/browse/ORC-162 (Open). was (Author: dongjoon): [~hyukjin.kwon]. I don't think so. Parquet file does not need `spark.sql.files.ignoreCorruptFiles` option. {code} scala> sql("create table empty_parquet(a int) stored as parquet location '/tmp/empty_parquet'").show ++ || ++ ++ $ touch /tmp/empty_parquet/zero.parquet scala> sql("select * from empty_parquet").show +---+ | a| +---+ +---+ {code} Also latest ORC file does not, too. It's fixed in https://issues.apache.org/jira/browse/ORC-162 . You can test this in Spark with SPARK-20728. {code} scala> sql("create table empty_orc2(a int) using orc location '/tmp/empty_orc'").show ++ || ++ ++ scala> sql("select * from empty_orc2").show +---+ | a| +---+ +---+ {code} I think this is a part of SPARK-20901. And ORC community already resolved this. What we need is just to use latest ORC. > NullPointerException on empty ORC file > -------------------------------------- > > Key: SPARK-19809 > URL: https://issues.apache.org/jira/browse/SPARK-19809 > Project: Spark > Issue Type: Bug > Components: Input/Output > Affects Versions: 1.6.3, 2.0.2, 2.1.1 > Reporter: MichaĆ Dawid > > When reading from hive ORC table if there are some 0 byte files we get > NullPointerException: > {code}java.lang.NullPointerException > at > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$BISplitStrategy.getSplits(OrcInputFormat.java:560) > at > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.generateSplitsInfo(OrcInputFormat.java:1010) > at > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.getSplits(OrcInputFormat.java:1048) > at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66) > at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at scala.collection.immutable.List.foreach(List.scala:318) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) > at scala.collection.AbstractTraversable.map(Traversable.scala:105) > at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:190) > at > org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165) > at > org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174) > at > org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499) > at > org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56) > at > org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086) > at > org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498) > at > org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505) > at > org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1375) > at > org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1374) > at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099) > at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1374) > at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1456) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:497) > at > org.apache.zeppelin.spark.ZeppelinContext.showDF(ZeppelinContext.java:209) > at > org.apache.zeppelin.spark.SparkSqlInterpreter.interpret(SparkSqlInterpreter.java:129) > at > org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:94) > at > org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:341) > at org.apache.zeppelin.scheduler.Job.run(Job.java:176) > at > org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:139) > at > java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745){code} -- This message was sent by Atlassian JIRA (v6.3.15#6346) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org