[ https://issues.apache.org/jira/browse/SPARK-19809?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16027987#comment-16027987 ]
Hyukjin Kwon commented on SPARK-19809: -------------------------------------- Yea, I agree that it should be dependent on the format specification/implementation, whether it is malformed or not. I think Parquet itself treats 0 bytes files as malformed file because it should read footer but it throws an exception up to my knowledge. The former case looks filtering out the whole partitions in {{DataSourceScanExec}}. Parquet requires to read the footers and it throws an exception, for example, I manually updated the code path to not skip the partitions so that the parquet reader is actually being called as below: {code} java.lang.RuntimeException: file:/.../tmp.abc is not a Parquet file (too small) at org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:466) at org.apache.parquet.hadoop.ParquetFileReader.<init>(ParquetFileReader.java:568) at org.apache.parquet.hadoop.ParquetFileReader.open(ParquetFileReader.java:492) at org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:166) at org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:147) {code} If we don't specify the schema, it also throws an exception as below: {code} spark.read.parquet(".../tmp.abc").show() {code} {code} java.io.IOException: Could not read footer for file: FileStatus{path=file:/.../tmp.abc; isDirectory=false; length=0; replication=0; blocksize=0; modification_time=0; access_time=0; owner=; group=; permission=rw-rw-rw-; isSymlink=false} at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$readParquetFootersInParallel$1.apply(ParquetFileFormat.scala:498) at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$readParquetFootersInParallel$1.apply(ParquetFileFormat.scala:485) at scala.collection.parallel.AugmentedIterableIterator$class.flatmap2combiner(RemainsIterator.scala:132) at scala.collection.parallel.immutable.ParVector$ParVectorIterator.flatmap2combiner(ParVector.scala:62) at scala.collection.parallel.ParIterableLike$FlatMap.leaf(ParIterableLike.scala:1072) {code} Assuming it is treated as a malformed file (per the ORC JIRA you pointed out above) for the current status, it looks a malformed file and it sounds we should be able to skip this in client side whether it should be dealt with {{spark.sql.files.ignoreCorruptFiles}} or not. For example, I found a related JIRA - https://issues.apache.org/jira/browse/AVRO-1530 and https://issues.apache.org/jira/browse/HIVE-11977. _If I read this correctly_, Avro looks decided not to change the behaviour but Hive deals with it. Only for this issue, I also agree that this could be a subset of the issues you pointed out. > NullPointerException on empty ORC file > -------------------------------------- > > Key: SPARK-19809 > URL: https://issues.apache.org/jira/browse/SPARK-19809 > Project: Spark > Issue Type: Bug > Components: Input/Output > Affects Versions: 1.6.3, 2.0.2, 2.1.1 > Reporter: MichaĆ Dawid > > When reading from hive ORC table if there are some 0 byte files we get > NullPointerException: > {code}java.lang.NullPointerException > at > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$BISplitStrategy.getSplits(OrcInputFormat.java:560) > at > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.generateSplitsInfo(OrcInputFormat.java:1010) > at > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.getSplits(OrcInputFormat.java:1048) > at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66) > at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at scala.collection.immutable.List.foreach(List.scala:318) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) > at scala.collection.AbstractTraversable.map(Traversable.scala:105) > at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:190) > at > org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165) > at > org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174) > at > org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499) > at > org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56) > at > org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086) > at > org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498) > at > org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505) > at > org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1375) > at > org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1374) > at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099) > at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1374) > at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1456) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:497) > at > org.apache.zeppelin.spark.ZeppelinContext.showDF(ZeppelinContext.java:209) > at > org.apache.zeppelin.spark.SparkSqlInterpreter.interpret(SparkSqlInterpreter.java:129) > at > org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:94) > at > org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:341) > at org.apache.zeppelin.scheduler.Job.run(Job.java:176) > at > org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:139) > at > java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745){code} -- This message was sent by Atlassian JIRA (v6.3.15#6346) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org