[ https://issues.apache.org/jira/browse/SPARK-20199?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16030629#comment-16030629 ]
pralabhkumar commented on SPARK-20199: -------------------------------------- please review the pull request . https://github.com/apache/spark/commit/16ccbdfd8862c528c90fdde94c8ec20d6631126e > GradientBoostedTreesModel doesn't have featureSubsetStrategy parameter > ----------------------------------------------------------------------- > > Key: SPARK-20199 > URL: https://issues.apache.org/jira/browse/SPARK-20199 > Project: Spark > Issue Type: Improvement > Components: ML, MLlib > Affects Versions: 2.1.0 > Reporter: pralabhkumar > > Spark GradientBoostedTreesModel doesn't have featureSubsetStrategy . It Uses > random forest internally ,which have featureSubsetStrategy hardcoded "all". > It should be provided by the user to have randomness at the feature level. > This parameter is available in H2O and XGBoost. > Sample from H2O.ai > gbmParams._col_sample_rate > Please provide the parameter . -- This message was sent by Atlassian JIRA (v6.3.15#6346) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org