[ 
https://issues.apache.org/jira/browse/SPARK-20199?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16030629#comment-16030629
 ] 

pralabhkumar commented on SPARK-20199:
--------------------------------------

please review the pull request . 
https://github.com/apache/spark/commit/16ccbdfd8862c528c90fdde94c8ec20d6631126e

> GradientBoostedTreesModel doesn't have  featureSubsetStrategy parameter
> -----------------------------------------------------------------------
>
>                 Key: SPARK-20199
>                 URL: https://issues.apache.org/jira/browse/SPARK-20199
>             Project: Spark
>          Issue Type: Improvement
>          Components: ML, MLlib
>    Affects Versions: 2.1.0
>            Reporter: pralabhkumar
>
> Spark GradientBoostedTreesModel doesn't have featureSubsetStrategy . It Uses 
> random forest internally ,which have featureSubsetStrategy hardcoded "all". 
> It should be provided by the user to have randomness at the feature level.
> This parameter is available in H2O and XGBoost. 
> Sample from H2O.ai 
> gbmParams._col_sample_rate
> Please provide the parameter . 



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to