[ 
https://issues.apache.org/jira/browse/SPARK-15044?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16033895#comment-16033895
 ] 

Dongjoon Hyun commented on SPARK-15044:
---------------------------------------

Hi, All.
According to SPARK-10198, that option seems to be deprecated by [~marmbrus] due 
to correctness issues.
IMO, let's remove the target version, 2.2.0, here. This issue cannot be 
bypassed by that option.


> spark-sql will throw "input path does not exist" exception if it handles a 
> partition which exists in hive table, but the path is removed manually
> -------------------------------------------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-15044
>                 URL: https://issues.apache.org/jira/browse/SPARK-15044
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 1.6.1, 2.0.0
>            Reporter: huangyu
>
> spark-sql will throw "input path not exist" exception if it handles a 
> partition which exists in hive table, but the path is removed manually.The 
> situation is as follows:
> 1) Create a table "test". "create table test (n string) partitioned by (p 
> string)"
> 2) Load some data into partition(p='1')
> 3)Remove the path related to partition(p='1') of table test manually. "hadoop 
> fs -rmr ..../warehouse/..../test/p=1"
> 4)Run spark sql, spark-sql -e "select n from test where p='1';"
> Then it throws exception:
> {code}
> org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: 
> ...../test/p=1
>         at 
> org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:285)
>         at 
> org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
>         at 
> org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:304)
>         at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
>         at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
>         at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
>         at scala.Option.getOrElse(Option.scala:120)
>         at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
>         at 
> org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
>         at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
>         at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
>         at scala.Option.getOrElse(Option.scala:120)
>         at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
>         at 
> org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
>         at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
>         at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
>         at scala.Option.getOrElse(Option.scala:120)
>         at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
>         at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
>         at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
>         at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>         at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>         at scala.collection.immutable.List.foreach(List.scala:318)
>         at 
> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>         at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>         at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
>         at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
>         at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
>         at scala.Option.getOrElse(Option.scala:120)
>         at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
>         at 
> org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
>         at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
>         at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
>         at scala.Option.getOrElse(Option.scala:120)
> {code}
> The bug is in spark 1.6.1, if I use spark 1.4.0, It is OK
> I think spark-sql should ignore the path, just like hive or it dose in early 
> versions, rather than throw an exception.



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to