[ https://issues.apache.org/jira/browse/SPARK-20987?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16036952#comment-16036952 ]
Sean Owen commented on SPARK-20987: ----------------------------------- Looks like a duplicate of one of several issues, like SPARK-12965. > columns with name having dots caused issues with VectorAssemblor > ---------------------------------------------------------------- > > Key: SPARK-20987 > URL: https://issues.apache.org/jira/browse/SPARK-20987 > Project: Spark > Issue Type: Bug > Components: Spark Core > Affects Versions: 2.0.2 > Reporter: Maher Hattabi > > Hello > i used this code knowing that that the data contains actually dots here is > the dataset. > "col0.1","col1.2","col2.3","col3.4" > 1,2,3,4 > 10,12,15,3 > 1,12,10,5 > Here is the code i used > val spark = > SparkSession.builder.master("local").appName("my-spark-app").getOrCreate() > val df = spark.read.format("csv").options(Map("header" -> "true", > "inferSchema" -> "true")).load("C:/Users/mhattabi/Desktop/donnee/test.txt") > val rows = new > VectorAssembler().setInputCols(df.columns).setOutputCol("vs").transform(df).select("vs").rdd > val data =rows .map(_.getAs[org.apache.spark.ml.linalg.Vector](0)) > .map(org.apache.spark.mllib.linalg.Vectors.fromML) > val mat: RowMatrix = new RowMatrix(data) > //// Compute the top 5 singular values and corresponding singular vectors. > val svd: SingularValueDecomposition[RowMatrix, Matrix] = > mat.computeSVD(mat.numCols().toInt, computeU = true) > val U: RowMatrix = svd.U // The U factor is a RowMatrix. > val s: Vector = svd.s // The singular values are stored in a local dense > vector. > val V: Matrix = svd.V // The V factor is a local dense matrix. > Here is the issue > org.apache.spark.sql.AnalysisException: Cannot resolve column name "col0.1" > among (col0.1, col1.2, col2.3, col3.4); -- This message was sent by Atlassian JIRA (v6.3.15#6346) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org