[ 
https://issues.apache.org/jira/browse/SPARK-21137?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16057592#comment-16057592
 ] 

sam commented on SPARK-21137:
-----------------------------

[~srowen]

I thought I already made a point about that? Please can you tell me what is 
wrong with the following reasoning:

> Yes it's likely that the underlying Hadoop APIs have some yucky code that 
> does something silly, I have delved down their before and my stomach cannot 
> handle it. Nevertheless Spark made the choice to inherit the complexities of 
> the Hadoop APIs and reading multiple small files seems like a pretty basic 
> use case for Spark (come on Sean this is Enron data!). It would feel a bit 
> perverse to just close this and blame the layer cake underneath. Spark should 
> use it's own extensions of the Hadoop APIs where the Hadoop APIs don't work 
> (and the Hadoop code is easily extensible).



> Spark cannot read many small files (wholeTextFiles)
> ---------------------------------------------------
>
>                 Key: SPARK-21137
>                 URL: https://issues.apache.org/jira/browse/SPARK-21137
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core
>    Affects Versions: 2.2.1
>            Reporter: sam
>
> A very common use case in big data is to read a large number of small files.  
> For example the Enron email dataset has 1,227,645 small files.
> When one tries to read this data using Spark one will hit many issues.  
> Firstly, even if the data is small (each file only say 1K) any job can take a 
> very long time (I have a simple job that has been running for 3 hours and has 
> not yet got to the point of starting any tasks, I doubt if it will ever 
> finish).
> It seems all the code in Spark that manages file listing is single threaded 
> and not well optimised.  When I hand crank the code and don't use Spark, my 
> job runs much faster.
> Is it possible that I'm missing some configuration option? It seems kinda 
> surprising to me that Spark cannot read Enron data given that it's such a 
> quintessential example.
> So it takes 1 hour to output a line "1,227,645 input paths to process", it 
> then takes another hour to output the same line. Then it outputs a CSV of all 
> the input paths (so creates a text storm).
> Now it's been stuck on the following:
> {code}
> 17/06/19 09:31:07 INFO LzoCodec: Successfully loaded & initialized native-lzo 
> library [hadoop-lzo rev 154f1ef53e2d6ed126b0957d7995e0a610947608]
> {code}
> for 2.5 hours.
> So I've provided full reproduce steps here (including code and cluster setup) 
> https://github.com/samthebest/scenron, scroll down to "Bug In Spark". You can 
> easily just clone, and follow the README to reproduce exactly!



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to