[ https://issues.apache.org/jira/browse/SPARK-21215?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16065329#comment-16065329 ]
Michael Kunkel commented on SPARK-21215: ---------------------------------------- The "resolution for this by [~sowen] was to put this on the spark mailing list. But I am sure this is just a scam to toss questions because the mailing list is no longer accepting emails. When sending a email to the mailing list, a reply is given Hello, This employee can no longer access email on this account. Your email will not be forwarded. So, this is not resolved. > Exception in thread "main" org.apache.spark.sql.AnalysisException: cannot > resolve > --------------------------------------------------------------------------------- > > Key: SPARK-21215 > URL: https://issues.apache.org/jira/browse/SPARK-21215 > Project: Spark > Issue Type: Bug > Components: Java API, SQL > Affects Versions: 2.1.1 > Environment: macOSX > Reporter: Michael Kunkel > > First Spark project. > I have a Java method that returns a Dataset<Row>. I want to convert this to a > Dataset<Object>, where the Object is named StatusChangeDB. I have created a > POJO StatusChangeDB.java and coded it with all the query objects found in the > mySQL table. > I then create a Encoder and convert the Dataset<Row> to a > Dataset<StatusChangeDB>. However when I try to .show() the values of the > Dataset<StatusChangeDB> I receive the error > bq. > bq. Exception in thread "main" org.apache.spark.sql.AnalysisException: cannot > resolve '`hvpinid_quad`' given input columns: [status_change_type, > superLayer, loclayer, sector, locwire]; > bq. at > org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) > bq. at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:86) > bq. at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:83) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:290) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:290) > bq. at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:289) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:287) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:287) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:307) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:305) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:287) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:287) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:287) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4$$anonfun$apply$10.apply(TreeNode.scala:324) > bq. at > scala.collection.MapLike$MappedValues$$anonfun$iterator$3.apply(MapLike.scala:246) > bq. at > scala.collection.MapLike$MappedValues$$anonfun$iterator$3.apply(MapLike.scala:246) > bq. at scala.collection.Iterator$$anon$11.next(Iterator.scala:409) > bq. at scala.collection.Iterator$class.foreach(Iterator.scala:893) > bq. at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) > bq. at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) > bq. at scala.collection.IterableLike$$anon$1.foreach(IterableLike.scala:311) > bq. at > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59) > bq. at > scala.collection.mutable.MapBuilder.$plus$plus$eq(MapBuilder.scala:25) > bq. at > scala.collection.TraversableViewLike$class.force(TraversableViewLike.scala:88) > bq. at scala.collection.IterableLike$$anon$1.force(IterableLike.scala:311) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:332) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:305) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:287) > bq. at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformExpressionsUp$1.apply(QueryPlan.scala:255) > bq. at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformExpressionsUp$1.apply(QueryPlan.scala:255) > bq. at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:266) > bq. at > org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$1(QueryPlan.scala:276) > bq. at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$6.apply(QueryPlan.scala:285) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) > bq. at > org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:285) > bq. at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:255) > bq. at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:83) > bq. at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:76) > bq. at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:128) > bq. at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:76) > bq. at > org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:57) > bq. at > org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.resolveAndBind(ExpressionEncoder.scala:259) > bq. at org.apache.spark.sql.Dataset.<init>(Dataset.scala:209) > bq. at org.apache.spark.sql.Dataset.<init>(Dataset.scala:167) > bq. at org.apache.spark.sql.Dataset$.apply(Dataset.scala:58) > bq. at org.apache.spark.sql.Dataset.as(Dataset.scala:376) > I do not know how to have whomever replicate this, but here are some methods > that are used on my end. I hope the error can be seen from the following > codes: > public static Dataset<Row> mySqlDataset() { > SparkSession spSession = getSession(); > spSession.sql("set spark.sql.caseSensitive=false"); > Dataset<Row> demoDf = > spSession.read().format("jdbc").options(jdbcOptions()).load(); > } > where jdbcOptions() are > public static Map<String, String> jdbcOptions() { > Map<String, String> jdbcOptions = new HashMap<String, String>(); > jdbcOptions.put("url", "jdbc:mysql://localhost:3306/test"); > jdbcOptions.put("driver", "com.mysql.jdbc.Driver"); > jdbcOptions.put("dbtable", "status_change"); > jdbcOptions.put("user", "root"); > jdbcOptions.put("password", ""); > return jdbcOptions; > } > the method that fails is > public Dataset<StatusChangeDB> compareRunII(String str) { > Dataset<Row> tempDF = SparkManager.mySqlDataset() > .select("loclayer", "superLayer", "sector", > "locwire", "status_change_type") > .filter(col("runno").equalTo(str)); > return tempDF.as(SparkManager.statusChangeDBEncoder()); > } > where SparkManager.statusChangeDBEncoder() is > public static Encoder<StatusChangeDB> statusChangeDBEncoder() { > return Encoders.bean(StatusChangeDB.class); > } > and StatusChangeDB is just a POJO that works because I am able to create > Dataset<StatusChangeDB> from a datafile. > There is no help on Google or this forum for this error. -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org