[ https://issues.apache.org/jira/browse/SPARK-21246?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16068553#comment-16068553 ]
Monica Raj commented on SPARK-21246: ------------------------------------ Thanks for your response. I also tried with Seq(3) as Seq(3L), however I had changed this back during the course of trying other options. I should also mention that we are running Zeppelin 0.6.0. I tried running the code you provided and still got the following output: import org.apache.spark.sql.types._ import org.apache.spark.sql.Row schemaString: String = name lstVals: Seq[Long] = List(3) rowRdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[30] at map at <console>:59 res20: Array[org.apache.spark.sql.Row] = Array([3]) fields: Array[org.apache.spark.sql.types.StructField] = Array(StructField(name,LongType,true)) schema: org.apache.spark.sql.types.StructType = StructType(StructField(name,LongType,true)) StructType(StructField(name,LongType,true))peopleDF: org.apache.spark.sql.DataFrame = [name: bigint] +----+ |name| +----+ | 3| +----+ > Unexpected Data Type conversion from LONG to BIGINT > --------------------------------------------------- > > Key: SPARK-21246 > URL: https://issues.apache.org/jira/browse/SPARK-21246 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 1.6.1 > Environment: Using Zeppelin Notebook or Spark Shell > Reporter: Monica Raj > > The unexpected conversion occurred when creating a data frame out of an > existing data collection. The following code can be run in zeppelin notebook > to reproduce the bug: > import org.apache.spark.sql.types._ > import org.apache.spark.sql.Row > val schemaString = "name" > val lstVals = Seq(3) > val rowRdd = sc.parallelize(lstVals).map(x => Row( x )) > rowRdd.collect() > // Generate the schema based on the string of schema > val fields = schemaString.split(" ") > .map(fieldName => StructField(fieldName, LongType, nullable = true)) > val schema = StructType(fields) > print(schema) > val peopleDF = sqlContext.createDataFrame(rowRdd, schema) -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org