[ https://issues.apache.org/jira/browse/SPARK-6227?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16079132#comment-16079132 ]
Abou Haydar Elias commented on SPARK-6227: ------------------------------------------ I was also wondering if we can add PCA and SVD in mllib for user not using 2.2 as described in my answer here https://stackoverflow.com/a/33500704/3415409 ? > PCA and SVD for PySpark > ----------------------- > > Key: SPARK-6227 > URL: https://issues.apache.org/jira/browse/SPARK-6227 > Project: Spark > Issue Type: Improvement > Components: MLlib, PySpark > Affects Versions: 1.2.1 > Reporter: Julien Amelot > Assignee: Manoj Kumar > Fix For: 2.2.0 > > > The Dimensionality Reduction techniques are not available via Python (Scala + > Java only). > * Principal component analysis (PCA) > * Singular value decomposition (SVD) > Doc: > http://spark.apache.org/docs/1.2.1/mllib-dimensionality-reduction.html -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org