[ https://issues.apache.org/jira/browse/SPARK-21365?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16080665#comment-16080665 ]
Apache Spark commented on SPARK-21365: -------------------------------------- User 'HyukjinKwon' has created a pull request for this issue: https://github.com/apache/spark/pull/18590 > Deduplicate logics parsing DDL-like type definition > --------------------------------------------------- > > Key: SPARK-21365 > URL: https://issues.apache.org/jira/browse/SPARK-21365 > Project: Spark > Issue Type: Improvement > Components: PySpark > Affects Versions: 2.2.0 > Reporter: Hyukjin Kwon > > It looks we duplicate > https://github.com/apache/spark/blob/d492cc5a21cd67b3999b85d97f5c41c3734b1ba3/python/pyspark/sql/types.py#L823-L845 > logic for parsing DDL-like type definitions. > There are also two more points here: > - This does not support "field type" but "field: type". > - This does not support nested schemas. For example as below: > {code} > >>> spark.createDataFrame([[[1]]], "struct<a: struct<b: int>>").show() > ... > ValueError: The strcut field string format is: 'field_name:field_type', but > got: a: struct<b: int> > {code} > {code} > >>> spark.createDataFrame([[[1]]], "a: struct<b: int>").show() > ... > ValueError: The strcut field string format is: 'field_name:field_type', but > got: a: struct<b: int> > {code} > {code} > >>> spark.createDataFrame([[[1]]], "a int").show() > ... > ValueError: Could not parse datatype: a int > {code} -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org