[ 
https://issues.apache.org/jira/browse/SPARK-21710?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-21710:
------------------------------------

    Assignee:     (was: Apache Spark)

> ConsoleSink causes OOM crashes with large inputs.
> -------------------------------------------------
>
>                 Key: SPARK-21710
>                 URL: https://issues.apache.org/jira/browse/SPARK-21710
>             Project: Spark
>          Issue Type: Bug
>          Components: Structured Streaming
>    Affects Versions: 2.2.0
>         Environment: affects all environments
>            Reporter: Gerard Maas
>              Labels: easyfix
>
> ConsoleSink does a full collect of the streaming dataset in order to show few 
> lines on screen. This is problematic with large inputs, like a kafka backlog 
> or a file source with files larger than the driver's memory.
> Here's an example:
> {code:java}
> import spark.implicits._
> import org.apache.spark.sql.functions
> import org.apache.spark.sql.types.StructType
> import org.apache.spark.sql.types._
> val schema = StructType(StructField("text", StringType, true) :: Nil)
> val lines = spark
>   .readStream
>   .format("text")
>   .option("path", "/tmp/data")
>   .schema(schema)
>   .load()
> val base = lines.writeStream
>   .outputMode("append")
>   .format("console")
>   .start()
> {code}
> When a large file larger than the available driver memory is fed through this 
> streaming job, we get:
> {code:java}
> -------------------------------------------
> Batch: 0
> -------------------------------------------
> [Stage 0:>                                                        (0 + 8) / 
> 111]17/08/11 15:10:45 ERROR Executor: Exception in task 6.0 in stage 0.0 (TID 
> 6)
> java.lang.OutOfMemoryError: Java heap space
>   at java.util.Arrays.copyOf(Arrays.java:3236)
>   at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118)
>   at 
> java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
>   at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
>   at 
> net.jpountz.lz4.LZ4BlockOutputStream.flushBufferedData(LZ4BlockOutputStream.java:205)
>   at net.jpountz.lz4.LZ4BlockOutputStream.write(LZ4BlockOutputStream.java:158)
>   at java.io.DataOutputStream.write(DataOutputStream.java:107)
>   at 
> org.apache.spark.sql.catalyst.expressions.UnsafeRow.writeToStream(UnsafeRow.java:554)
>   at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:237)
>   at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228)
>   at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
>   at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
>   at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>   at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>   at org.apache.spark.scheduler.Task.run(Task.scala:108)
>   at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
>   at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>   at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>   at java.lang.Thread.run(Thread.java:748)
> 17/08/11 15:10:45 ERROR SparkUncaughtExceptionHandler: Uncaught exception in 
> thread Thread[Executor task launch worker for task 6,5,main]
> java.lang.OutOfMemoryError: Java heap space
> {code}
> This issue can be traced back to a `collect` on the source `DataFrame`:
> https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/console.scala#L52
> A fairly simple solution would be to do a `take(numRows)` instead of the 
> collect. (PR in progress)



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to