Arthur Baudry created SPARK-22240: ------------------------------------- Summary: S3 CSV number of partitions incorrectly computed Key: SPARK-22240 URL: https://issues.apache.org/jira/browse/SPARK-22240 Project: Spark Issue Type: Bug Components: Spark Core Affects Versions: 2.2.0 Environment: Running on EMR 5.8.0 with Hadoop 2.7.3 and Spark 2.2.0 Reporter: Arthur Baudry
Reading CSV out of S3 using S3A protocol does not compute the number of partitions correctly in Spark 2.2.0. With Spark 2.2.0 I get only partition when loading a 14GB file {code:java} scala> val input = spark.read.format("csv").option("header", "true").option("delimiter", "|").option("multiLine", "true").load("s3a://<s3_path>") input: org.apache.spark.sql.DataFrame = [PARTY_KEY: string, ROW_START_DATE: string ... 36 more fields] scala> input.rdd.getNumPartitions res2: Int = 1 {code} While in Spark 2.0.2 I had: {code:java} scala> val input = spark.read.format("csv").option("header", "true").option("delimiter", "|").option("multiLine", "true").load("s3a://<s3_path>") input: org.apache.spark.sql.DataFrame = [PARTY_KEY: string, ROW_START_DATE: string ... 36 more fields] scala> input.rdd.getNumPartitions res2: Int = 115 {code} This introduces obvious performance issues in Spark 2.2.0. Maybe there is a property that should be set to have the number of partitions computed correctly. I'm aware that the .option("multiline","true") is not supported in Spark 2.0.2, it's not relevant here. -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org