Cheburakshu created SPARK-22277: ----------------------------------- Summary: Chi Square selector garbling Vector content. Key: SPARK-22277 URL: https://issues.apache.org/jira/browse/SPARK-22277 Project: Spark Issue Type: Bug Components: MLlib Affects Versions: 2.1.1 Reporter: Cheburakshu
There is a difference in behavior when Chisquare selector is used v direct feature use in decision tree classifier. In the below code, I have used chisquare selector as a thru' pass but the decision tree classifier is unable to process it. But, it is able to process when the features are used directly. The example is pulled out directly from Apache spark python documentation. Kindly help. {code:python} from pyspark.ml.feature import ChiSqSelector from pyspark.ml.linalg import Vectors import sys df = spark.createDataFrame([ (7, Vectors.dense([0.0, 0.0, 18.0, 1.0]), 1.0,), (8, Vectors.dense([0.0, 1.0, 12.0, 0.0]), 0.0,), (9, Vectors.dense([1.0, 0.0, 15.0, 0.1]), 0.0,)], ["id", "features", "clicked"]) # ChiSq selector will just be a pass-through. All four featuresin the i/p will be in output also. selector = ChiSqSelector(numTopFeatures=4, featuresCol="features", outputCol="selectedFeatures", labelCol="clicked") result = selector.fit(df).transform(df) print("ChiSqSelector output with top %d features selected" % selector.getNumTopFeatures()) from pyspark.ml.classification import DecisionTreeClassifier try: # Fails dt = DecisionTreeClassifier(labelCol="clicked",featuresCol="selectedFeatures") model = dt.fit(result) except: print(sys.exc_info()) #Works dt = DecisionTreeClassifier(labelCol="clicked",featuresCol="features") model = dt.fit(df) # Make predictions. Using same dataset, not splitting!! predictions = model.transform(result) # Select example rows to display. predictions.select("prediction", "clicked", "features").show(5) # Select (prediction, true label) and compute test error evaluator = MulticlassClassificationEvaluator( labelCol="clicked", predictionCol="prediction", metricName="accuracy") accuracy = evaluator.evaluate(predictions) print("Test Error = %g " % (1.0 - accuracy)) {code} Output: ChiSqSelector output with top 4 features selected (<class 'pyspark.sql.utils.IllegalArgumentException'>, IllegalArgumentException('Feature 0 is marked as Nominal (categorical), but it does not have the number of values specified.', 'org.apache.spark.ml.util.MetadataUtils$$anonfun$getCategoricalFeatures$1.apply(MetadataUtils.scala:69)\n\t at org.apache.spark.ml.util.MetadataUtils$$anonfun$getCategoricalFeatures$1.apply(MetadataUtils.scala:59)\n\t at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)\n\t at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)\n\t at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)\n\t at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)\n\t at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)\n\t at scala.collection.mutable.ArrayOps$ofRef.flatMap(ArrayOps.scala:186)\n\t at org.apache.spark.ml.util.MetadataUtils$.getCategoricalFeatures(MetadataUtils.scala:59)\n\t at org.apache.spark.ml.classification.DecisionTreeClassifier.train(DecisionTreeClassifier.scala:101)\n\t at org.apache.spark.ml.classification.DecisionTreeClassifier.train(DecisionTreeClassifier.scala:45)\n\t at org.apache.spark.ml.Predictor.fit(Predictor.scala:96)\n\t at org.apache.spark.ml.Predictor.fit(Predictor.scala:72)\n\t at sun.reflect.GeneratedMethodAccessor280.invoke(Unknown Source)\n\t at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)\n\t at java.lang.reflect.Method.invoke(Method.java:498)\n\t at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)\n\t at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)\n\t at py4j.Gateway.invoke(Gateway.java:280)\n\t at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)\n\t at py4j.commands.CallCommand.execute(CallCommand.java:79)\n\t at py4j.GatewayConnection.run(GatewayConnection.java:214)\n\t at java.lang.Thread.run(Thread.java:745)'), <traceback object at 0x0A87D878>) +----------+-------+------------------+ |prediction|clicked| features| +----------+-------+------------------+ | 1.0| 1.0|[0.0,0.0,18.0,1.0]| | 0.0| 0.0|[0.0,1.0,12.0,0.0]| | 0.0| 0.0|[1.0,0.0,15.0,0.1]| +----------+-------+------------------+ Test Error = 0 -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org