[ https://issues.apache.org/jira/browse/SPARK-21725?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16226337#comment-16226337 ]
xinzhang commented on SPARK-21725: ---------------------------------- Now I try with the master branch. The problem is still here. Steps: 1.download . install . exec hivesql (hive-1.2.1 . Here prove my hive is OK) !https://user-images.githubusercontent.com/8244097/32210043-7554300e-be46-11e7-8ce0-f61bc0bfa998.png! 2.download . install . exec spark-sql (spark-master I build it with master the lastest commit 44c4003155c1d243ffe0f73d5537b4c8b3f3b564) First time . Spark-sql result: GOOD !https://user-images.githubusercontent.com/8244097/32210200-5b02de20-be47-11e7-8eac-e0228a7cf7f5.png! Second time . Spark-sql result: GOOD !https://user-images.githubusercontent.com/8244097/32210320-f518aa12-be47-11e7-9a86-a16819583748.png! 3.use spark-sql thriftserver First time . Spark-sql result: GOOD Second time .Spark-sql result: BAD !https://user-images.githubusercontent.com/8244097/32210560-47d431da-be49-11e7-8279-7dd88dda42a6.png! > spark thriftserver insert overwrite table partition select > ----------------------------------------------------------- > > Key: SPARK-21725 > URL: https://issues.apache.org/jira/browse/SPARK-21725 > Project: Spark > Issue Type: Bug > Components: Spark Core > Affects Versions: 2.1.0 > Environment: centos 6.7 spark 2.1 jdk8 > Reporter: xinzhang > Labels: spark-sql > > use thriftserver create table with partitions. > session 1: > SET hive.default.fileformat=Parquet;create table tmp_10(count bigint) > partitioned by (pt string) stored as parquet; > --ok > !exit > session 2: > SET hive.default.fileformat=Parquet;create table tmp_11(count bigint) > partitioned by (pt string) stored as parquet; > --ok > !exit > session 3: > --connect the thriftserver > SET hive.default.fileformat=Parquet;insert overwrite table tmp_10 > partition(pt='1') select count(1) count from tmp_11; > --ok > !exit > session 4(do it again): > --connect the thriftserver > SET hive.default.fileformat=Parquet;insert overwrite table tmp_10 > partition(pt='1') select count(1) count from tmp_11; > --error > !exit > ------------------------------------------------------------------------------------- > 17/08/14 18:13:42 ERROR SparkExecuteStatementOperation: Error executing > query, currentState RUNNING, > java.lang.reflect.InvocationTargetException > ...... > ...... > Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: Unable to move > source > hdfs://dc-hadoop54:50001/group/user/user1/meta/hive-temp-table/user1.db/tmp_11/.hive-staging_hive_2017-08-14_18-13-39_035_6303339779053 > 512282-2/-ext-10000/part-00000 to destination > hdfs://dc-hadoop54:50001/group/user/user1/meta/hive-temp-table/user1.db/tmp_11/pt=1/part-00000 > at org.apache.hadoop.hive.ql.metadata.Hive.moveFile(Hive.java:2644) > at org.apache.hadoop.hive.ql.metadata.Hive.copyFiles(Hive.java:2711) > at > org.apache.hadoop.hive.ql.metadata.Hive.loadPartition(Hive.java:1403) > at > org.apache.hadoop.hive.ql.metadata.Hive.loadPartition(Hive.java:1324) > ... 45 more > Caused by: java.io.IOException: Filesystem closed > .... > ------------------------------------------------------------------------------------- > the doc about the parquet table desc here > http://spark.apache.org/docs/latest/sql-programming-guide.html#parquet-files > Hive metastore Parquet table conversion > When reading from and writing to Hive metastore Parquet tables, Spark SQL > will try to use its own Parquet support instead of Hive SerDe for better > performance. This behavior is controlled by the > spark.sql.hive.convertMetastoreParquet configuration, and is turned on by > default. > I am confused the problem appear in the table(partitions) but it is ok with > table(with out partitions) . It means spark do not use its own parquet ? > Maybe someone give any suggest how could I avoid the issue? -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org