Bryan Cutler created SPARK-22417: ------------------------------------ Summary: createDataFrame from a pandas.DataFrame reads datetime64 values as longs Key: SPARK-22417 URL: https://issues.apache.org/jira/browse/SPARK-22417 Project: Spark Issue Type: Bug Components: PySpark Affects Versions: 2.2.0 Reporter: Bryan Cutler Priority: Normal
When trying to create a Spark DataFrame from an existing Pandas DataFrame using {{createDataFrame}}, columns with datetime64 values are converted as long values. This is only when the schema is not specified. {code} In [2]: import pandas as pd ...: from datetime import datetime ...: In [3]: pdf = pd.DataFrame({"ts": [datetime(2017, 10, 31, 1, 1, 1)]}) In [4]: df = spark.createDataFrame(pdf) In [5]: df.show() +-------------------+ | ts| +-------------------+ |1509411661000000000| +-------------------+ In [6]: df.schema Out[6]: StructType(List(StructField(ts,LongType,true))) {code} Spark should interpret a datetime64\[D\] value to DateType and other datetime64 values to TImestampType. -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org