[ 
https://issues.apache.org/jira/browse/SPARK-2468?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14208013#comment-14208013
 ] 

Lianhui Wang commented on SPARK-2468:
-------------------------------------

[~adav]yes i re-run test with  preferDirectBufs=true and maxUsableCores=2 on 
yarn. that cause container to be killed because Container is running beyond 
physical memory limits.
if i set preferDirectBufs=false, it is ok, but setting preferDirectBufs=false 
the Netty's performance is not good than NioBlockTransferService.
in my test size of shuffle data is 1-2G , executor-memory=7g,executor-cores=2, 
spark.yarn.executor.memoryOverhead=1024

> Netty-based block server / client module
> ----------------------------------------
>
>                 Key: SPARK-2468
>                 URL: https://issues.apache.org/jira/browse/SPARK-2468
>             Project: Spark
>          Issue Type: Improvement
>          Components: Shuffle, Spark Core
>            Reporter: Reynold Xin
>            Assignee: Reynold Xin
>            Priority: Critical
>             Fix For: 1.2.0
>
>
> Right now shuffle send goes through the block manager. This is inefficient 
> because it requires loading a block from disk into a kernel buffer, then into 
> a user space buffer, and then back to a kernel send buffer before it reaches 
> the NIC. It does multiple copies of the data and context switching between 
> kernel/user. It also creates unnecessary buffer in the JVM that increases GC
> Instead, we should use FileChannel.transferTo, which handles this in the 
> kernel space with zero-copy. See 
> http://www.ibm.com/developerworks/library/j-zerocopy/
> One potential solution is to use Netty.  Spark already has a Netty based 
> network module implemented (org.apache.spark.network.netty). However, it 
> lacks some functionality and is turned off by default. 



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to