Andrew Duffy created SPARK-22641: ------------------------------------ Summary: Pyspark UDF relying on column added with withColumn after distinct Key: SPARK-22641 URL: https://issues.apache.org/jira/browse/SPARK-22641 Project: Spark Issue Type: Bug Components: PySpark Affects Versions: 2.3.0 Reporter: Andrew Duffy
We seem to have found an issue with PySpark UDFs interacting with {{withColumn}} when the UDF depends on the column added in {{withColumn}}, but _only_ if {{withColumn}} is performed after a {{distinct()}}. Simplest repro in a local PySpark shell: {code} import pyspark.sql.functions as F @F.udf(returnType="integer") def ident(x): return x df = spark.createDataFrame([ {'a': '1', 'nums': ['1']}, {'a': '2', 'nums': ['1', '2']} ]) df2 = df.distinct().withColumn('c', F.lit(1)) df2.show() df2.withColumn('added', ident(df2['c'])).collect() {code} The {{df.show()}} will succeed, but the following collect fails with the following exception: {code} Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/aduffy/git/open_source/spark/python/pyspark/sql/dataframe.py", line 451, in collect port = self._jdf.collectToPython() File "/Users/aduffy/git/open_source/spark/python/lib/py4j-0.10.6-src.zip/py4j/java_gateway.py", line 1160, in __call__ File "/Users/aduffy/git/open_source/spark/python/pyspark/sql/utils.py", line 63, in deco return f(*a, **kw) File "/Users/aduffy/git/open_source/spark/python/lib/py4j-0.10.6-src.zip/py4j/protocol.py", line 320, in get_return_value py4j.protocol.Py4JJavaError: An error occurred while calling o72.collectToPython. : org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute, tree: pythonUDF0#26 at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87) at org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$38.apply(HashAggregateExec.scala:512) at org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$38.apply(HashAggregateExec.scala:511) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.immutable.List.map(List.scala:285) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.generateResultFunction(HashAggregateExec.scala:511) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduceWithKeys(HashAggregateExec.scala:657) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduce(HashAggregateExec.scala:164) at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:85) at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:80) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:141) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:138) at org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:80) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.produce(HashAggregateExec.scala:38) at org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:361) at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:409) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:113) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:141) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:138) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113) at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:233) at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:280) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:3088) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:3085) at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:3085) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:3118) at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:3085) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:748) Caused by: java.lang.RuntimeException: Couldn't find pythonUDF0#26 in [a#0,nums#1] at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) ... 58 more {code} The odd part is that if you run the code, but remove the {{.distinct()}}, or place it after {{.withColumn("b", ...)}} we don't get the error. -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org