[ 
https://issues.apache.org/jira/browse/SPARK-22641?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-22641:
------------------------------------

    Assignee: Apache Spark

> Pyspark UDF relying on column added with withColumn after distinct
> ------------------------------------------------------------------
>
>                 Key: SPARK-22641
>                 URL: https://issues.apache.org/jira/browse/SPARK-22641
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark
>    Affects Versions: 2.3.0
>            Reporter: Andrew Duffy
>            Assignee: Apache Spark
>
> We seem to have found an issue with PySpark UDFs interacting with 
> {{withColumn}} when the UDF depends on the column added in {{withColumn}}, 
> but _only_ if {{withColumn}} is performed after a {{distinct()}}.
> Simplest repro in a local PySpark shell:
> {code}
> import pyspark.sql.functions as F
> @F.udf
> def ident(x):
>     return x
> spark.createDataFrame([{'a': '1'}]) \
>     .distinct() \
>     .withColumn('b', F.lit('qq')) \
>     .withColumn('fails_here', ident('b')) \
>     .collect()
> {code}
> This fails with the following exception:
> {code}
> : org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding 
> attribute, tree: pythonUDF0#13
>         at 
> org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56)
>         at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:91)
>         at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:90)
>         at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
>         at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
>         at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
>         at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266)
>         at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
>         at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
>         at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
>         at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
>         at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
>         at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
>         at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256)
>         at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:90)
>         at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$38.apply(HashAggregateExec.scala:514)
>         at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$38.apply(HashAggregateExec.scala:513)
>         at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>         at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>         at scala.collection.immutable.List.foreach(List.scala:381)
>         at 
> scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>         at scala.collection.immutable.List.map(List.scala:285)
>         at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.generateResultFunction(HashAggregateExec.scala:513)
>         at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduceWithKeys(HashAggregateExec.scala:659)
>         at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduce(HashAggregateExec.scala:164)
>         at 
> org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:85)
>         at 
> org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:80)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:141)
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
>         at 
> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:138)
>         at 
> org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:80)
>         at 
> org.apache.spark.sql.execution.aggregate.HashAggregateExec.produce(HashAggregateExec.scala:38)
>         at 
> org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:374)
>         at 
> org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:422)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:113)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:141)
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
>         at 
> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:138)
>         at 
> org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113)
>         at 
> org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:233)
>         at 
> org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:280)
>         at 
> org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:3088)
>         at 
> org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:3085)
>         at 
> org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:3085)
>         at 
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
>         at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:3118)
>         at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:3085)
>         at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>         at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>         at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>         at java.lang.reflect.Method.invoke(Method.java:498)
>         at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
>         at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
>         at py4j.Gateway.invoke(Gateway.java:282)
>         at 
> py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
>         at py4j.commands.CallCommand.execute(CallCommand.java:79)
>         at py4j.GatewayConnection.run(GatewayConnection.java:214)
>         at java.lang.Thread.run(Thread.java:748)
> Caused by: java.lang.RuntimeException: Couldn't find pythonUDF0#13 in [a#0]
>         at scala.sys.package$.error(package.scala:27)
>         at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:97)
>         at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:91)
>         at 
> org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
>         ... 58 more
> {code}
> The odd part is that if you run the code, but remove the {{.distinct()}}, or 
> place it after either of the {{.withColumn}} lines, we don't get the error.



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to