[ 
https://issues.apache.org/jira/browse/SPARK-22665?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16272802#comment-16272802
 ] 

Adrian Ionescu commented on SPARK-22665:
----------------------------------------

{code}
scala> spark.range(10).repartition(10).select('id, spark_partition_id()).show
+---+--------------------+
| id|SPARK_PARTITION_ID()|
+---+--------------------+
|  9|                   0|
|  0|                   1|
|  1|                   2|
|  2|                   3|
|  3|                   4|
|  4|                   5|
|  5|                   6|
|  6|                   7|
|  7|                   8|
|  8|                   9|
+---+--------------------+


scala> spark.range(10).repartition(10, Seq.empty: _*).select('id, 
spark_partition_id()).show
+---+--------------------+
| id|SPARK_PARTITION_ID()|
+---+--------------------+
|  0|                   2|
|  1|                   2|
|  2|                   2|
|  3|                   2|
|  4|                   2|
|  5|                   2|
|  6|                   2|
|  7|                   2|
|  8|                   2|
|  9|                   2|
+---+--------------------+

{code}

> Dataset API: .repartition() inconsistency / issue
> -------------------------------------------------
>
>                 Key: SPARK-22665
>                 URL: https://issues.apache.org/jira/browse/SPARK-22665
>             Project: Spark
>          Issue Type: Improvement
>          Components: SQL
>    Affects Versions: 2.2.0
>            Reporter: Adrian Ionescu
>
> We currently have two functions for explicitly repartitioning a Dataset:
> {code}
> def repartition(numPartitions: Int)
> {code}
> and
> {code}
> def repartition(numPartitions: Int, partitionExprs: Column*)
> {code}
> The second function's signature allows it to be called with an empty list of 
> expressions as well. 
> However:
> * {{df.repartition(numPartitions)}} does RoundRobin partitioning
> * {{df.repartition(numPartitions, Seq.empty: _*)}} does HashPartitioning on a 
> constant, effectively moving all tuples to a single partition
> Not only is this inconsistent, but the latter behavior is very undesirable: 
> it may hide problems in small-scale prototype code, but will inevitably fail 
> (or have terrible performance) in production.
> I suggest we should make it:
> - either throw an {{IllegalArgumentException}}
> - or do RoundRobin partitioning, just like {{df.repartition(numPartitions)}}



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to