[ 
https://issues.apache.org/jira/browse/SPARK-22683?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16278845#comment-16278845
 ] 

Sean Owen commented on SPARK-22683:
-----------------------------------

I get it, but you're just finding ways to delay adding executors. There are 
already ways to do this. You can cap the number of executors of course. You can 
also set spark.dynamicAllocation.schedulerBacklogTimeout to a longer period to 
let the pending task queue build up instead. That's more responsive than always 
choosing higher latency even when there are available slots on existing 
executors.

> Allow tuning the number of dynamically allocated executors wrt task number
> --------------------------------------------------------------------------
>
>                 Key: SPARK-22683
>                 URL: https://issues.apache.org/jira/browse/SPARK-22683
>             Project: Spark
>          Issue Type: Improvement
>          Components: Spark Core
>    Affects Versions: 2.1.0, 2.2.0
>            Reporter: Julien Cuquemelle
>              Labels: pull-request-available
>
> let's say an executor has spark.executor.cores / spark.task.cpus taskSlots
> The current dynamic allocation policy allocates enough executors
> to have each taskSlot execute a single task, which minimizes latency, 
> but wastes resources when tasks are small regarding executor allocation
> overhead. 
> By adding the tasksPerExecutorSlot, it is made possible to specify how many 
> tasks
> a single slot should ideally execute to mitigate the overhead of executor
> allocation.
> PR: https://github.com/apache/spark/pull/19881



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to