[ 
https://issues.apache.org/jira/browse/SPARK-16870?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16279679#comment-16279679
 ] 

cathy commented on SPARK-16870:
-------------------------------

Hi Liang Ke,

I am using spark-1.6.2, when I ran some jobs, this error same with the jira 
mentioned pop out.
Could you help me fix it?

Thanks,
Cathy Li



> add "spark.sql.broadcastTimeout" into docs/sql-programming-guide.md to help 
> people to how to fix this timeout error when it happenned
> -------------------------------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-16870
>                 URL: https://issues.apache.org/jira/browse/SPARK-16870
>             Project: Spark
>          Issue Type: Improvement
>          Components: Documentation
>            Reporter: Liang Ke
>            Assignee: Liang Ke
>            Priority: Trivial
>             Fix For: 2.0.1, 2.1.0
>
>
> here my workload and what I found 
> I run a large number jobs with spark-sql at the same time. and meet the error 
> that print timeout (some job contains the broadcast-join operator) : 
> 16/08/03 15:43:23 ERROR SparkExecuteStatementOperation: Error executing 
> query, currentState RUNNING,
> java.util.concurrent.TimeoutException: Futures timed out after [300 seconds]
>         at 
> scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
>         at 
> scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
>         at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
>         at 
> scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
>         at scala.concurrent.Await$.result(package.scala:107)
>         at 
> org.apache.spark.sql.execution.joins.BroadcastHashOuterJoin.doExecute(BroadcastHashOuterJoin.scala:113)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
>         at 
> org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
>         at 
> org.apache.spark.sql.execution.Filter.doExecute(basicOperators.scala:70)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
>         at 
> org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
>         at 
> org.apache.spark.sql.execution.Project.doExecute(basicOperators.scala:46)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
>         at 
> org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
>         at 
> org.apache.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:56)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
>         at 
> org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
>         at 
> org.apache.spark.sql.hive.execution.InsertIntoHiveTable.sideEffectResult$lzycompute(InsertIntoHiveTable.scala:201)
>         at 
> org.apache.spark.sql.hive.execution.InsertIntoHiveTable.sideEffectResult(InsertIntoHiveTable.scala:127)
>         at 
> org.apache.spark.sql.hive.execution.InsertIntoHiveTable.doExecute(InsertIntoHiveTable.scala:276)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
>         at 
> org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
>         at 
> org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
>         at 
> org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
>         at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145)
>         at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130)
>         at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:52)
>         at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:817)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecute
> StatementOperation$$execute(SparkExecuteStatementOperation.scala:211)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$1$$anon$2.run(SparkExecuteStatementOperation.
> scala:154)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$1$$anon$2.run(SparkExecuteStatementOperation.
> scala:151)
>         at java.security.AccessController.doPrivileged(Native Method)
>         at javax.security.auth.Subject.doAs(Subject.java:415)
>         at 
> org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1793)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$1.run(SparkExecuteStatementOperation.scala:16
> 4)
>         at 
> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
>         at java.util.concurrent.FutureTask.run(FutureTask.java:262)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>         at java.lang.Thread.run(Thread.java:745)
> 16/08/03 15:43:23 ERROR SparkExecuteStatementOperation: Error running hive 
> query:
> org.apache.hive.service.cli.HiveSQLException: 
> java.util.concurrent.TimeoutException: Futures timed out after [300 seconds]
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecute
> StatementOperation$$execute(SparkExecuteStatementOperation.scala:246)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$1$$anon$2.run(SparkExecuteStatementOperation.
> scala:154)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$1$$anon$2.run(SparkExecuteStatementOperation.
> scala:151)
>         at java.security.AccessController.doPrivileged(Native Method)
>         at javax.security.auth.Subject.doAs(Subject.java:415)
>         at 
> org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1793)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$1.run(SparkExecuteStatementOperation.scala:16
> 4)
> if I reset value bigger then 300s, error do not show again. so I think maybe 
> we need add "spark.sql.broadcastTimeout" property into 
> docs/sql-programming-guide.md. it can help people to how to fix this timeout 
> error when it happenned 



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to