[ https://issues.apache.org/jira/browse/SPARK-19809?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16378018#comment-16378018 ]
Franck Tago commented on SPARK-19809: ------------------------------------- Need a pointer on the following. Env : Spark 2.2.1 1- I set the property spark.sql.hive.convertMetastoreOrc to true 2- My hive table has the following schema CREATE TABLE `ft_orc`( `int` int, `double` double, `big+int` bigint, `$tring` string, `(decimal)` decimal(15,8), `flo@t` float, `datetime` date, `timestamp` timestamp, `01` int) CLUSTERED BY ( `int`) INTO 20 BUCKETS ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.orc.OrcSerde' WITH SERDEPROPERTIES ( 'field.delim'=',', 'serialization.format'=',') STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat' ; I loaded the table with 1 row of data !image-2018-02-26-20-29-49-410.png! I tried to run the following simple statement scala> var res =spark.sql(" SELECT alias.`int` as a0, alias.`double` as a1, alias.`big+int` as a2, alias.`$tring` as a3, CAST(alias.`(decimal)` AS DOUBLE) as a4, CAST(alias.`flo@t` AS DOUBLE) as a5, CAST(alias.`datetime` AS TIMESTAMP) as a6, alias.`timestamp` as a7, alias.`01` as a8 FROM default.ft_orc alias" ) 18/02/27 04:30:57 WARN HiveConf: HiveConf of name hive.conf.hidden.list does not exist 18/02/27 04:30:57 WARN HiveConf: HiveConf of name hive.conf.hidden.list does not exist java.lang.IndexOutOfBoundsException at java.nio.Buffer.checkIndex(Buffer.java:540) at java.nio.HeapByteBuffer.get(HeapByteBuffer.java:139) at org.apache.hadoop.hive.ql.io.orc.ReaderImpl.extractMetaInfoFromFooter(ReaderImpl.java:374) at org.apache.hadoop.hive.ql.io.orc.ReaderImpl.<init>(ReaderImpl.java:316) at org.apache.hadoop.hive.ql.io.orc.OrcFile.createReader(OrcFile.java:187) at org.apache.spark.sql.hive.orc.OrcFileOperator$$anonfun$getFileReader$2.apply(OrcFileOperator.scala:68) at org.apache.spark.sql.hive.orc.OrcFileOperator$$anonfun$getFileReader$2.apply(OrcFileOperator.scala:67) at scala.collection.Iterator$$anon$11.next(Iterator.scala:409) at scala.collection.TraversableOnce$class.collectFirst(TraversableOnce.scala:145) at scala.collection.AbstractIterator.collectFirst(Iterator.scala:1336) at org.apache.spark.sql.hive.orc.OrcFileOperator$.getFileReader(OrcFileOperator.scala:69) at org.apache.spark.sql.hive.orc.OrcFileOperator$$anonfun$readSchema$1.apply(OrcFileOperator.scala:77) at org.apache.spark.sql.hive.orc.OrcFileOperator$$anonfun$readSchema$1.apply(OrcFileOperator.scala:77) at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241) at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241) at scala.collection.immutable.List.flatMap(List.scala:344) Any pointer ? Should I file a separate Jira ? > NullPointerException on zero-size ORC file > ------------------------------------------ > > Key: SPARK-19809 > URL: https://issues.apache.org/jira/browse/SPARK-19809 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 1.6.3, 2.0.2, 2.1.1, 2.2.1 > Reporter: Michał Dawid > Assignee: Dongjoon Hyun > Priority: Major > Fix For: 2.3.0 > > Attachments: image-2018-02-26-20-29-49-410.png > > > When reading from hive ORC table if there are some 0 byte files we get > NullPointerException: > {code}java.lang.NullPointerException > at > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$BISplitStrategy.getSplits(OrcInputFormat.java:560) > at > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.generateSplitsInfo(OrcInputFormat.java:1010) > at > org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.getSplits(OrcInputFormat.java:1048) > at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66) > at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at scala.collection.immutable.List.foreach(List.scala:318) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) > at scala.collection.AbstractTraversable.map(Traversable.scala:105) > at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242) > at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240) > at scala.Option.getOrElse(Option.scala:120) > at org.apache.spark.rdd.RDD.partitions(RDD.scala:240) > at > org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:190) > at > org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165) > at > org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174) > at > org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499) > at > org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56) > at > org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086) > at > org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498) > at > org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505) > at > org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1375) > at > org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1374) > at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099) > at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1374) > at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1456) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:497) > at > org.apache.zeppelin.spark.ZeppelinContext.showDF(ZeppelinContext.java:209) > at > org.apache.zeppelin.spark.SparkSqlInterpreter.interpret(SparkSqlInterpreter.java:129) > at > org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:94) > at > org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:341) > at org.apache.zeppelin.scheduler.Job.run(Job.java:176) > at > org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:139) > at > java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745){code} -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org