[ https://issues.apache.org/jira/browse/SPARK-5498?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Apache Spark reassigned SPARK-5498: ----------------------------------- Assignee: jeanlyn (was: Apache Spark) > [SPARK-SQL]when the partition schema does not match table schema,it throws > java.lang.ClassCastException and so on > ----------------------------------------------------------------------------------------------------------------- > > Key: SPARK-5498 > URL: https://issues.apache.org/jira/browse/SPARK-5498 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 1.2.0, 2.2.0 > Reporter: jeanlyn > Assignee: jeanlyn > Priority: Major > Fix For: 1.4.0, 3.0.0 > > > when the partition schema does not match table schema,it will thows exception > when the task is running.For example,we modify the type of column from int to > bigint by the sql *ALTER TABLE table_with_partition CHANGE COLUMN key key > BIGINT* ,then we query the patition data which was stored before the > changing,we would get the exception: > {noformat} > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in > stage 27.0 failed 4 times, most recent failure: Lost task 0.3 in stage 27.0 > (TID 30, BJHC-HADOOP-HERA-16950.jeanlyn.local): java.lang.ClassCastException: > org.apache.spark.sql.catalyst.expressions.MutableLong cannot be cast to > org.apache.spark.sql.catalyst.expressions.MutableInt > at > org.apache.spark.sql.catalyst.expressions.SpecificMutableRow.setInt(SpecificMutableRow.scala:241) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$13$$anonfun$apply$4.apply(TableReader.scala:286) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$13$$anonfun$apply$4.apply(TableReader.scala:286) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$1.apply(TableReader.scala:322) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$1.apply(TableReader.scala:314) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$$anon$10.next(Iterator.scala:312) > at scala.collection.Iterator$class.foreach(Iterator.scala:727) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) > at > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) > at > scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) > at scala.collection.AbstractIterator.to(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) > at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) > at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) > at > org.apache.spark.sql.execution.Limit$$anonfun$4.apply(basicOperators.scala:141) > at > org.apache.spark.sql.execution.Limit$$anonfun$4.apply(basicOperators.scala:141) > at > org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1314) > at > org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1314) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61) > at org.apache.spark.scheduler.Task.run(Task.scala:56) > at > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:196) > at > java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) > at java.lang.Thread.run(Thread.java:662) > Driver stacktrace: > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420) > at akka.actor.Actor$class.aroundReceive(Actor.scala:465) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375) > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516) > at akka.actor.ActorCell.invoke(ActorCell.scala:487) > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238) > at akka.dispatch.Mailbox.run(Mailbox.scala:220) > at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393) > at > scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > {noformat} > we can reproduce the bug as follow: > add the code to the unit test > *sql/hive/src/test/scala/org/apache/spark/sql/hive/InsertIntoHiveTableSuite.scala* > {noformat} > test("partition schema does not match table schema"){ > val testData = TestHive.sparkContext.parallelize( > (1 to 10).map(i => TestData(i, i.toString))) > testData.registerTempTable("testData") > val tmpDir = Files.createTempDir() > sql(s"CREATE TABLE table_with_partition(key int,value string) PARTITIONED > by (ds string) location '${tmpDir.toURI.toString}' ") > sql("INSERT OVERWRITE TABLE table_with_partition partition (ds='1') > SELECT key,value FROM testData") > sql("ALTER TABLE table_with_partition CHANGE COLUMN key key BIGINT") > checkAnswer(sql("select key,value from table_with_partition where ds='1' > "), > testData.toSchemaRDD.collect.toSeq > ) > sql("DROP TABLE table_with_partition") > > } > {noformat} > run the test > {noformat} > mvn -Dhadoop.version=... - > DwildcardSuites=org.apache.spark.sql.hive.InsertIntoHiveTableSuite test > {noformat} -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org