[ 
https://issues.apache.org/jira/browse/SPARK-22371?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16402271#comment-16402271
 ] 

Ben Doerr edited comment on SPARK-22371 at 4/17/18 2:04 PM:
------------------------------------------------------------

We've seen this for the first time on 2.3.0. 

The scenario that [~mayank.agarwal2305] described of jobs running in parallel 
on datasets and union of all datasets and full gc triggered" sounds exactly 
like our scenario. We've been unable to upgrade because of this issue.


was (Author: craftsman):
We've seen this for the first time on 2.3.0. 

> dag-scheduler-event-loop thread stopped with error  Attempted to access 
> garbage collected accumulator 5605982
> -------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-22371
>                 URL: https://issues.apache.org/jira/browse/SPARK-22371
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core
>    Affects Versions: 2.1.0
>            Reporter: Mayank Agarwal
>            Priority: Major
>         Attachments: Helper.scala, ShuffleIssue.java, 
> driver-thread-dump-spark2.1.txt, sampledata
>
>
> Our Spark Jobs are getting stuck on DagScheduler.runJob as dagscheduler 
> thread is stopped because of *Attempted to access garbage collected 
> accumulator 5605982*.
> from our investigation it look like accumulator is cleaned by GC first and 
> same accumulator is used for merging the results from executor on task 
> completion event.
> As the error java.lang.IllegalAccessError is LinkageError which is treated as 
> FatalError so dag-scheduler loop is finished with below exception.
> ---ERROR stack trace --
> Exception in thread "dag-scheduler-event-loop" java.lang.IllegalAccessError: 
> Attempted to access garbage collected accumulator 5605982
>       at 
> org.apache.spark.util.AccumulatorContext$$anonfun$get$1.apply(AccumulatorV2.scala:253)
>       at 
> org.apache.spark.util.AccumulatorContext$$anonfun$get$1.apply(AccumulatorV2.scala:249)
>       at scala.Option.map(Option.scala:146)
>       at 
> org.apache.spark.util.AccumulatorContext$.get(AccumulatorV2.scala:249)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$updateAccumulators$1.apply(DAGScheduler.scala:1083)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$updateAccumulators$1.apply(DAGScheduler.scala:1080)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>       at 
> org.apache.spark.scheduler.DAGScheduler.updateAccumulators(DAGScheduler.scala:1080)
>       at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:1183)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1647)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
> I am attaching the thread dump of driver as well 



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to