[ 
https://issues.apache.org/jira/browse/SPARK-4494?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Xiangrui Meng updated SPARK-4494:
---------------------------------
    Priority: Minor  (was: Major)

> IDFModel.transform() add support for single vector
> --------------------------------------------------
>
>                 Key: SPARK-4494
>                 URL: https://issues.apache.org/jira/browse/SPARK-4494
>             Project: Spark
>          Issue Type: New Feature
>          Components: MLlib
>    Affects Versions: 1.1.1, 1.2.0
>            Reporter: Jean-Philippe Quemener
>            Priority: Minor
>
> For now when using the tfidf implementation of mllib you have no other 
> possibility to map your data back onto i.e. labels or ids than use a hackish 
> way with ziping: {quote} 1. Persist input RDD. 2. Transform it to just 
> vectors and apply IDFModel 3. zip with original RDD 4. transform label and 
> new vector to LabeledPoint{quote}
> Source:[http://stackoverflow.com/questions/26897908/spark-mllib-tfidf-implementation-for-logisticregression]
> I think as in production alot of users want to map their data back to some 
> identifier, it would be a good imporvement to allow using a single vector on 
> IDFModel.transform()



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to