[ 
https://issues.apache.org/jira/browse/SPARK-24233?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

smohr003 updated SPARK-24233:
-----------------------------
    Description: 
I know that I can use wild card * to read all subfolders. But, I am trying to 
use .par and .schema to speed up the read process. 

val absolutePath = "adl://datalakename.azuredatalakestore.net/testU/"

Seq((1, "one"), (2, "two")).toDF("k", 
"v").write.mode("overwrite").parquet(absolutePath + "1")
 Seq((11, "one"), (22, "two")).toDF("k", 
"v").write.mode("overwrite").parquet(absolutePath + "2")
 Seq((111, "one"), (222, "two")).toDF("k", 
"v").write.mode("overwrite").parquet(absolutePath + "3")
 Seq((1111, "one"), (2222, "two")).toDF("k", 
"v").write.mode("overwrite").parquet(absolutePath + "4")
 Seq((2, "one"), (2, "two")).toDF("k", 
"v").write.mode("overwrite").parquet(absolutePath + "5")

 

import org.apache.hadoop.conf.Configuration
 import org.apache.hadoop.fs.\{FileSystem, Path}
 import java.net.URI
 def readDir(path: String): DataFrame =

{ val fs = FileSystem.get(new URI(path), new Configuration()) val subDir = 
fs.listStatus(new Path(path)).map(i => i.getPath.toString) var df = 
spark.read.parquet(subDir.head) val dfSchema = df.schema 
subDir.tail.par.foreach(p => df = 
df.union(spark.read.schema(dfSchema).parquet(p)).select(df.columns.head, 
df.columns.tail:_*)) df }

val dfAll = readDir(absolutePath)
 dfAll.count

 The count of produced dfAll is 4, which in this example should be 10. 

  was:
I know that I can use wild card * to read all subfolders. But, I am trying to 
use .par and .schema to speed up the read process. 

val absolutePath = "adl://datalakename.azuredatalakestore.net/testU/"

Seq((1, "one"), (2, "two")).toDF("k", 
"v").write.mode("overwrite").parquet(absolutePath + "1")
 Seq((11, "one"), (22, "two")).toDF("k", 
"v").write.mode("overwrite").parquet(absolutePath + "2")
 Seq((111, "one"), (222, "two")).toDF("k", 
"v").write.mode("overwrite").parquet(absolutePath + "3")
 Seq((1111, "one"), (2222, "two")).toDF("k", 
"v").write.mode("overwrite").parquet(absolutePath + "4")
 Seq((2, "one"), (2, "two")).toDF("k", 
"v").write.mode("overwrite").parquet(absolutePath + "5")

 

import org.apache.hadoop.conf.Configuration
 import org.apache.hadoop.fs.\{FileSystem, Path}
 import java.net.URI
 def readDir(path: String): DataFrame =

{ val fs = FileSystem.get(new URI(path), new Configuration()) val subDir = 
fs.listStatus(new Path(path)).map(i => i.getPath.toString) var df = 
spark.read.parquet(subDir.head) val dfSchema = df.schema 
subDir.tail.par.foreach(p => df = 
df.union(spark.read.schema(dfSchema).parquet(p)).select(df.columns.head, 
df.columns.tail:_*)) df }

val dfAll = readDir(absolutePath)
 dfAll.count

 The count of produced df is 4, which in this example should be 10. 


> union operation on read of dataframe does nor produce correct result 
> ---------------------------------------------------------------------
>
>                 Key: SPARK-24233
>                 URL: https://issues.apache.org/jira/browse/SPARK-24233
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.1.0
>            Reporter: smohr003
>            Priority: Major
>
> I know that I can use wild card * to read all subfolders. But, I am trying to 
> use .par and .schema to speed up the read process. 
> val absolutePath = "adl://datalakename.azuredatalakestore.net/testU/"
> Seq((1, "one"), (2, "two")).toDF("k", 
> "v").write.mode("overwrite").parquet(absolutePath + "1")
>  Seq((11, "one"), (22, "two")).toDF("k", 
> "v").write.mode("overwrite").parquet(absolutePath + "2")
>  Seq((111, "one"), (222, "two")).toDF("k", 
> "v").write.mode("overwrite").parquet(absolutePath + "3")
>  Seq((1111, "one"), (2222, "two")).toDF("k", 
> "v").write.mode("overwrite").parquet(absolutePath + "4")
>  Seq((2, "one"), (2, "two")).toDF("k", 
> "v").write.mode("overwrite").parquet(absolutePath + "5")
>  
> import org.apache.hadoop.conf.Configuration
>  import org.apache.hadoop.fs.\{FileSystem, Path}
>  import java.net.URI
>  def readDir(path: String): DataFrame =
> { val fs = FileSystem.get(new URI(path), new Configuration()) val subDir = 
> fs.listStatus(new Path(path)).map(i => i.getPath.toString) var df = 
> spark.read.parquet(subDir.head) val dfSchema = df.schema 
> subDir.tail.par.foreach(p => df = 
> df.union(spark.read.schema(dfSchema).parquet(p)).select(df.columns.head, 
> df.columns.tail:_*)) df }
> val dfAll = readDir(absolutePath)
>  dfAll.count
>  The count of produced dfAll is 4, which in this example should be 10. 



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to