Abdeali Kothari created SPARK-24458: ---------------------------------------
Summary: Invalid PythonUDF check_1(), requires attributes from more than one child Key: SPARK-24458 URL: https://issues.apache.org/jira/browse/SPARK-24458 Project: Spark Issue Type: Bug Components: PySpark Affects Versions: 2.3.0 Environment: Spark 2.3.0 (local mode) Mac OSX Reporter: Abdeali Kothari I was trying out a very large query execution plan I have and I got the error: {code:java} py4j.protocol.Py4JJavaError: An error occurred while calling o359.simpleString. : java.lang.RuntimeException: Invalid PythonUDF check_1(), requires attributes from more than one child. at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$$anonfun$org$apache$spark$sql$execution$python$ExtractPythonUDFs$$extract$2.apply(ExtractPythonUDFs.scala:182) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$$anonfun$org$apache$spark$sql$execution$python$ExtractPythonUDFs$$extract$2.apply(ExtractPythonUDFs.scala:181) at scala.collection.immutable.Stream.foreach(Stream.scala:594) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$.org$apache$spark$sql$execution$python$ExtractPythonUDFs$$extract(ExtractPythonUDFs.scala:181) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$$anonfun$apply$2.applyOrElse(ExtractPythonUDFs.scala:118) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$$anonfun$apply$2.applyOrElse(ExtractPythonUDFs.scala:114) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:288) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:286) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:286) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$.apply(ExtractPythonUDFs.scala:114) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$.apply(ExtractPythonUDFs.scala:94) at org.apache.spark.sql.execution.QueryExecution$$anonfun$prepareForExecution$1.apply(QueryExecution.scala:87) at org.apache.spark.sql.execution.QueryExecution$$anonfun$prepareForExecution$1.apply(QueryExecution.scala:87) at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124) at scala.collection.immutable.List.foldLeft(List.scala:84) at org.apache.spark.sql.execution.QueryExecution.prepareForExecution(QueryExecution.scala:87) at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:77) at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:77) at org.apache.spark.sql.execution.QueryExecution$$anonfun$simpleString$1.apply(QueryExecution.scala:187) at org.apache.spark.sql.execution.QueryExecution$$anonfun$simpleString$1.apply(QueryExecution.scala:187) at org.apache.spark.sql.execution.QueryExecution.stringOrError(QueryExecution.scala:100) at org.apache.spark.sql.execution.QueryExecution.simpleString(QueryExecution.scala:187) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:748){code} I get a dataframe (df) after a lot of PythonUDFs running on a CSV dataset and I drop some columns in between. Finally, I create 3 python lists (for example, [0.1, 0.2, 0.3, ...] which I convert to a Spark DataFrame using createDataFrame. I join all three list-converted-dataframes using crossJoin() and then do a crossJoin with the original data I have. Then I run a Python UDF which is check_1. check_1 is something like: {code:java} def check_1(): if 1 == 1: return 'yes' else: return 'no'{code} So, it is a Python UDF which takes in no argument and always returns 'yes'. (Note: This UDF is created on the fly... so for testing, I am currently just using this dummy always 'yes' function) After I get check_1 's output, I am converting all my checks (they could be more than 1 but in my current test I have only 1) into a Map(string, string). Finally, I try to do a filter("checks['first'] = 'yes'") to filter the records I need. When I try to do the filter and then do a .explain() it fails with the above error. Here is the explain of the dataframe up until before I do the filter(): {noformat} *(1) Project [... cols ...] +- BatchEvalPython [python_udf_to_create_map([check_1], array(pythonUDF0#1851))], [... cols ...] +- BatchEvalPython [check_1()], [... cols ...] +- InMemoryTableScan [... cols ...] +- InMemoryRelation [... cols ...], true, 10000, StorageLevel(disk, 1 replicas) +- BroadcastNestedLoopJoin BuildLeft, Cross :- BroadcastExchange IdentityBroadcastMode : +- *(5) Project [... cols ...] : +- BatchEvalPython [... Python UDF ...], [... cols ...] : +- *(4) Project [... cols ...] : +- BatchEvalPython [... Python UDFs ...], [... cols ...] : +- *(3) Project [... cols ...] : +- BatchEvalPython [... Python UDFs ...], [... cols ...] : +- *(2) Project [... cols ...] : +- BatchEvalPython [ ... Python UDFs ... ], [ ... cols ... ] : +- *(1) FileScan csv [ ... cols ... ] Batched: false, Format: CSV, Location: InMemoryFileIndex[file:/Users/abdealijk/Documents/data..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<... +- CartesianProduct :- *(6) Project [value#1261 AS computed_v1#1263] : +- Scan ExistingRDD[value#1261] +- CartesianProduct :- *(7) Project [value#1265 AS computed_v2#1267] : +- Scan ExistingRDD[value#1265] +- *(8) Project [value#1269 AS computed_v3#1271] +- Scan ExistingRDD[value#1269]{noformat} I have simplified the explain() output. Let me know if I have deleted some data you may need. I tried creating a simpler reproducible example, but wasn't able to make anything simpler .... -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org