[ 
https://issues.apache.org/jira/browse/SPARK-24593?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

lhq updated SPARK-24593:
------------------------
    Environment: 
{code:java}
// demo code
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.streaming;

import java.util.Arrays;
import java.util.regex.Pattern;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.api.java.StorageLevels;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

/**
* Use DataFrames and SQL to count words in UTF8 encoded, '\n' delimited text 
received from the
* network every second.
*
* Usage: JavaSqlNetworkWordCount <hostname> <port>
* <hostname> and <port> describe the TCP server that Spark Streaming would 
connect to receive data.
*
* To run this on your local machine, you need to first run a Netcat server
* `$ nc -lk 9999`
* and then run the example
* `$ bin/run-example 
org.apache.spark.examples.streaming.JavaSqlNetworkWordCount localhost 9999`
*/
public final class JavaSqlNetworkWordCount {
private static final Pattern SPACE = Pattern.compile(" ");

public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: JavaNetworkWordCount <hostname> <port>");
System.exit(1);
}

StreamingExamples.setStreamingLogLevels();

// Create the context with a 1 second batch size
SparkConf sparkConf = new SparkConf().setAppName("JavaSqlNetworkWordCount");
JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, 
Durations.seconds(1));

// Create a JavaReceiverInputDStream on target ip:port and count the
// words in input stream of \n delimited text (eg. generated by 'nc')
// Note that no duplication in storage level only for running locally.
// Replication necessary in distributed scenario for fault tolerance.
JavaReceiverInputDStream<String> lines = ssc.socketTextStream(
args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER);
JavaDStream<String> words = lines.flatMap(x -> 
Arrays.asList(SPACE.split(x)).iterator());

// Convert RDDs of the words DStream to DataFrame and run SQL query
words.foreachRDD((rdd, time) -> {
SparkSession spark = 
JavaSparkSessionSingleton.getInstance(rdd.context().getConf());

// Convert JavaRDD[String] to JavaRDD[bean class] to DataFrame
JavaRDD<JavaRecord> rowRDD = rdd.map(word -> {
JavaRecord record = new JavaRecord();
record.setWord(word);
return record;
});
Dataset<Row> wordsDataFrame = spark.createDataFrame(rowRDD, JavaRecord.class);

// Creates a temporary view using the DataFrame
wordsDataFrame.createOrReplaceTempView("words");

// Do word count on table using SQL and print it
Dataset<Row> wordCountsDataFrame =
spark.sql("select word, count(*) as total from words group by word");
System.out.println("========= " + time + "=========");
wordCountsDataFrame.show();

// access hive talbe failed
spark.sql("select * from test_fch");
});

ssc.start();
ssc.awaitTermination();
}
}

/** Lazily instantiated singleton instance of SparkSession */
class JavaSparkSessionSingleton {
private static transient SparkSession instance = null;
public static SparkSession getInstance(SparkConf sparkConf) {
if (instance == null) {
instance = SparkSession
.builder()
.config(sparkConf)
.enableHiveSupport()
.getOrCreate();
}
return instance;
}
}

{code}

  was:
{code:java}
// demo code
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.streaming;

import java.util.Arrays;
import java.util.regex.Pattern;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.api.java.StorageLevels;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

/**
* Use DataFrames and SQL to count words in UTF8 encoded, '\n' delimited text 
received from the
* network every second.
*
* Usage: JavaSqlNetworkWordCount <hostname> <port>
* <hostname> and <port> describe the TCP server that Spark Streaming would 
connect to receive data.
*
* To run this on your local machine, you need to first run a Netcat server
* `$ nc -lk 9999`
* and then run the example
* `$ bin/run-example 
org.apache.spark.examples.streaming.JavaSqlNetworkWordCount localhost 9999`
*/
public final class JavaSqlNetworkWordCount {
private static final Pattern SPACE = Pattern.compile(" ");

public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: JavaNetworkWordCount <hostname> <port>");
System.exit(1);
}

StreamingExamples.setStreamingLogLevels();

// Create the context with a 1 second batch size
SparkConf sparkConf = new SparkConf().setAppName("JavaSqlNetworkWordCount");
JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, 
Durations.seconds(1));

// Create a JavaReceiverInputDStream on target ip:port and count the
// words in input stream of \n delimited text (eg. generated by 'nc')
// Note that no duplication in storage level only for running locally.
// Replication necessary in distributed scenario for fault tolerance.
JavaReceiverInputDStream<String> lines = ssc.socketTextStream(
args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER);
JavaDStream<String> words = lines.flatMap(x -> 
Arrays.asList(SPACE.split(x)).iterator());

// Convert RDDs of the words DStream to DataFrame and run SQL query
words.foreachRDD((rdd, time) -> {
SparkSession spark = 
JavaSparkSessionSingleton.getInstance(rdd.context().getConf());

// Convert JavaRDD[String] to JavaRDD[bean class] to DataFrame
JavaRDD<JavaRecord> rowRDD = rdd.map(word -> {
JavaRecord record = new JavaRecord();
record.setWord(word);
return record;
});
Dataset<Row> wordsDataFrame = spark.createDataFrame(rowRDD, JavaRecord.class);

// Creates a temporary view using the DataFrame
wordsDataFrame.createOrReplaceTempView("words");

// Do word count on table using SQL and print it
Dataset<Row> wordCountsDataFrame =
spark.sql("select word, count(*) as total from words group by word");
System.out.println("========= " + time + "=========");
wordCountsDataFrame.show();
spark.sql("select * from test_fch");
});

ssc.start();
ssc.awaitTermination();
}
}

/** Lazily instantiated singleton instance of SparkSession */
class JavaSparkSessionSingleton {
private static transient SparkSession instance = null;
public static SparkSession getInstance(SparkConf sparkConf) {
if (instance == null) {
instance = SparkSession
.builder()
.config(sparkConf)
.enableHiveSupport()
.getOrCreate();
}
return instance;
}
}

{code}


> can not find hive table after spark streaming started
> -----------------------------------------------------
>
>                 Key: SPARK-24593
>                 URL: https://issues.apache.org/jira/browse/SPARK-24593
>             Project: Spark
>          Issue Type: Bug
>          Components: DStreams, SQL
>    Affects Versions: 2.3.0, 2.3.1
>         Environment: {code:java}
> // demo code
> /*
> * Licensed to the Apache Software Foundation (ASF) under one or more
> * contributor license agreements. See the NOTICE file distributed with
> * this work for additional information regarding copyright ownership.
> * The ASF licenses this file to You under the Apache License, Version 2.0
> * (the "License"); you may not use this file except in compliance with
> * the License. You may obtain a copy of the License at
> *
> * http://www.apache.org/licenses/LICENSE-2.0
> *
> * Unless required by applicable law or agreed to in writing, software
> * distributed under the License is distributed on an "AS IS" BASIS,
> * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
> * See the License for the specific language governing permissions and
> * limitations under the License.
> */
> package org.apache.spark.examples.streaming;
> import java.util.Arrays;
> import java.util.regex.Pattern;
> import org.apache.spark.SparkConf;
> import org.apache.spark.api.java.JavaRDD;
> import org.apache.spark.sql.Dataset;
> import org.apache.spark.sql.Row;
> import org.apache.spark.sql.SparkSession;
> import org.apache.spark.api.java.StorageLevels;
> import org.apache.spark.streaming.Durations;
> import org.apache.spark.streaming.api.java.JavaDStream;
> import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
> import org.apache.spark.streaming.api.java.JavaStreamingContext;
> /**
> * Use DataFrames and SQL to count words in UTF8 encoded, '\n' delimited text 
> received from the
> * network every second.
> *
> * Usage: JavaSqlNetworkWordCount <hostname> <port>
> * <hostname> and <port> describe the TCP server that Spark Streaming would 
> connect to receive data.
> *
> * To run this on your local machine, you need to first run a Netcat server
> * `$ nc -lk 9999`
> * and then run the example
> * `$ bin/run-example 
> org.apache.spark.examples.streaming.JavaSqlNetworkWordCount localhost 9999`
> */
> public final class JavaSqlNetworkWordCount {
> private static final Pattern SPACE = Pattern.compile(" ");
> public static void main(String[] args) throws Exception {
> if (args.length < 2) {
> System.err.println("Usage: JavaNetworkWordCount <hostname> <port>");
> System.exit(1);
> }
> StreamingExamples.setStreamingLogLevels();
> // Create the context with a 1 second batch size
> SparkConf sparkConf = new SparkConf().setAppName("JavaSqlNetworkWordCount");
> JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, 
> Durations.seconds(1));
> // Create a JavaReceiverInputDStream on target ip:port and count the
> // words in input stream of \n delimited text (eg. generated by 'nc')
> // Note that no duplication in storage level only for running locally.
> // Replication necessary in distributed scenario for fault tolerance.
> JavaReceiverInputDStream<String> lines = ssc.socketTextStream(
> args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER);
> JavaDStream<String> words = lines.flatMap(x -> 
> Arrays.asList(SPACE.split(x)).iterator());
> // Convert RDDs of the words DStream to DataFrame and run SQL query
> words.foreachRDD((rdd, time) -> {
> SparkSession spark = 
> JavaSparkSessionSingleton.getInstance(rdd.context().getConf());
> // Convert JavaRDD[String] to JavaRDD[bean class] to DataFrame
> JavaRDD<JavaRecord> rowRDD = rdd.map(word -> {
> JavaRecord record = new JavaRecord();
> record.setWord(word);
> return record;
> });
> Dataset<Row> wordsDataFrame = spark.createDataFrame(rowRDD, JavaRecord.class);
> // Creates a temporary view using the DataFrame
> wordsDataFrame.createOrReplaceTempView("words");
> // Do word count on table using SQL and print it
> Dataset<Row> wordCountsDataFrame =
> spark.sql("select word, count(*) as total from words group by word");
> System.out.println("========= " + time + "=========");
> wordCountsDataFrame.show();
> // access hive talbe failed
> spark.sql("select * from test_fch");
> });
> ssc.start();
> ssc.awaitTermination();
> }
> }
> /** Lazily instantiated singleton instance of SparkSession */
> class JavaSparkSessionSingleton {
> private static transient SparkSession instance = null;
> public static SparkSession getInstance(SparkConf sparkConf) {
> if (instance == null) {
> instance = SparkSession
> .builder()
> .config(sparkConf)
> .enableHiveSupport()
> .getOrCreate();
> }
> return instance;
> }
> }
> {code}
>            Reporter: lhq
>            Priority: Major
>
> org.apache.spark.sql.AnalysisException: Table or view not found: test_fch; 
> line 1 pos 14
>  at 
> org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:47)
>  at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupTableFromCatalog(Analyzer.scala:665)
>  at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.resolveRelation(Analyzer.scala:617)
>  at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:647)
>  at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:640)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289)
>  at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:288)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
>  at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:286)
>  at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:640)
>  at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:586)
>  at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:87)
>  at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:84)
>  at 
> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
>  at scala.collection.immutable.List.foldLeft(List.scala:84)
>  at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:84)
>  at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:76)
>  at scala.collection.immutable.List.foreach(List.scala:381)
>  at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:76)
>  at 
> org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:124)
>  at 
> org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:118)
>  at 
> org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:103)
>  at 
> org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
>  at 
> org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
>  at 
> org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
>  at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:74)
>  at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:641)
>  at 
> org.apache.spark.examples.streaming.JavaSqlNetworkWordCount.lambda$main$3dd8454f$1(JavaSqlNetworkWordCount.java:89)
>  at 
> org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280)
>  at 
> org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280)
>  at 
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
>  at 
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
>  at 
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
>  at 
> org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416)
>  at 
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
>  at 
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
>  at 
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
>  at scala.util.Try$.apply(Try.scala:192)
>  at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
>  at 
> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257)
>  at 
> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257)
>  at 
> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257)
>  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
>  at 
> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256)
>  at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>  at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>  at java.lang.Thread.run(Thread.java:748)
> Caused by: org.apache.spark.sql.catalyst.analysis.NoSuchTableException: Table 
> or view 'test_fch' not found in database 'default';
>  at 
> org.apache.spark.sql.catalyst.catalog.ExternalCatalog.requireTableExists(ExternalCatalog.scala:46)
>  at 
> org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.getTable(InMemoryCatalog.scala:326)
>  at 
> org.apache.spark.sql.catalyst.catalog.SessionCatalog.lookupRelation(SessionCatalog.scala:669)
>  at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupTableFromCatalog(Analyzer.scala:662)
>  ... 51 more



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to