[ 
https://issues.apache.org/jira/browse/SPARK-24528?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16523344#comment-16523344
 ] 

Ohad Raviv commented on SPARK-24528:
------------------------------------

Hi,

well it took me some time to get to it, but here are my design conclusions:
 # currently all the file scans are done with FileScanRDD. in its current 
implementation it gets a list of files in each partition and iterates the one 
after the other.
 # that means we probably need another FileScanRDD that can "open" all the 
files and iterate them in a merge sort manner (like maintaing a heap to know 
what's the next file to iterate from).
 # the FileScanRDD is created in FileSourceScanExec.createBucketedReadRDD if 
the data is bucketed.
 # FileSourceScanExec is created in FileSourceStrategy.
 # that means we could understand if the data read output is required to be 
sorted in FileSourceStrategy and percolate this knowledge to the creation of 
the new FileScan(Sorted?)RDD.
 # thing to note here is to enable this sorted reading only if it's required 
otherwise it will cause performance issue.

please tell me WDYT.

> Missing optimization for Aggregations/Windowing on a bucketed table
> -------------------------------------------------------------------
>
>                 Key: SPARK-24528
>                 URL: https://issues.apache.org/jira/browse/SPARK-24528
>             Project: Spark
>          Issue Type: Improvement
>          Components: SQL
>    Affects Versions: 2.3.0, 2.4.0
>            Reporter: Ohad Raviv
>            Priority: Major
>
> Closely related to  SPARK-24410, we're trying to optimize a very common use 
> case we have of getting the most updated row by id from a fact table.
> We're saving the table bucketed to skip the shuffle stage, but we're still 
> "waste" time on the Sort operator evethough the data is already sorted.
> here's a good example:
> {code:java}
> sparkSession.range(N).selectExpr(
>   "id as key",
>   "id % 2 as t1",
>   "id % 3 as t2")
>     .repartition(col("key"))
>     .write
>   .mode(SaveMode.Overwrite)
>     .bucketBy(3, "key")
>     .sortBy("key", "t1")
>     .saveAsTable("a1"){code}
> {code:java}
> sparkSession.sql("select max(struct(t1, *)) from a1 group by key").explain
> == Physical Plan ==
> SortAggregate(key=[key#24L], functions=[max(named_struct(t1, t1#25L, key, 
> key#24L, t1, t1#25L, t2, t2#26L))])
> +- SortAggregate(key=[key#24L], functions=[partial_max(named_struct(t1, 
> t1#25L, key, key#24L, t1, t1#25L, t2, t2#26L))])
> +- *(1) FileScan parquet default.a1[key#24L,t1#25L,t2#26L] Batched: true, 
> Format: Parquet, Location: ...{code}
>  
> and here's a bad example, but more realistic:
> {code:java}
> sparkSession.sql("set spark.sql.shuffle.partitions=2")
> sparkSession.sql("select max(struct(t1, *)) from a1 group by key").explain
> == Physical Plan ==
> SortAggregate(key=[key#32L], functions=[max(named_struct(t1, t1#33L, key, 
> key#32L, t1, t1#33L, t2, t2#34L))])
> +- SortAggregate(key=[key#32L], functions=[partial_max(named_struct(t1, 
> t1#33L, key, key#32L, t1, t1#33L, t2, t2#34L))])
> +- *(1) Sort [key#32L ASC NULLS FIRST], false, 0
> +- *(1) FileScan parquet default.a1[key#32L,t1#33L,t2#34L] Batched: true, 
> Format: Parquet, Location: ...
> {code}
>  
> I've traced the problem to DataSourceScanExec#235:
> {code:java}
> val sortOrder = if (sortColumns.nonEmpty) {
>   // In case of bucketing, its possible to have multiple files belonging to 
> the
>   // same bucket in a given relation. Each of these files are locally sorted
>   // but those files combined together are not globally sorted. Given that,
>   // the RDD partition will not be sorted even if the relation has sort 
> columns set
>   // Current solution is to check if all the buckets have a single file in it
>   val files = selectedPartitions.flatMap(partition => partition.files)
>   val bucketToFilesGrouping =
>     files.map(_.getPath.getName).groupBy(file => 
> BucketingUtils.getBucketId(file))
>   val singleFilePartitions = bucketToFilesGrouping.forall(p => p._2.length <= 
> 1){code}
> so obviously the code avoids dealing with this situation now..
> could you think of a way to solve this or bypass it?



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to