[ 
https://issues.apache.org/jira/browse/SPARK-24796?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16544655#comment-16544655
 ] 

Li Jin commented on SPARK-24796:
--------------------------------

Sorry I am traveling now but I will try to take a look when I get back

> Support GROUPED_AGG_PANDAS_UDF in Pivot
> ---------------------------------------
>
>                 Key: SPARK-24796
>                 URL: https://issues.apache.org/jira/browse/SPARK-24796
>             Project: Spark
>          Issue Type: Improvement
>          Components: PySpark, SQL
>    Affects Versions: 2.4.0
>            Reporter: Xiao Li
>            Priority: Major
>
> Currently, Grouped AGG PandasUDF is not supported in Pivot. It is nice to 
> support it. 
> {code}
> # create input dataframe
> from pyspark.sql import Row
> data = [
>   Row(id=123, total=200.0, qty=3, name='item1'),
>   Row(id=124, total=1500.0, qty=1, name='item2'),
>   Row(id=125, total=203.5, qty=2, name='item3'),
>   Row(id=126, total=200.0, qty=500, name='item1'),
> ]
> df = spark.createDataFrame(data)
> from pyspark.sql.functions import pandas_udf, PandasUDFType
> @pandas_udf('double', PandasUDFType.GROUPED_AGG)
> def pandas_avg(v):
>    return v.mean()
> from pyspark.sql.functions import col, sum
>   
> applied_df = 
> df.groupby('id').pivot('name').agg(pandas_avg('total').alias('mean'))
> applied_df.show()
> {code}



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to