[ 
https://issues.apache.org/jira/browse/SPARK-24934?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Wenchen Fan resolved SPARK-24934.
---------------------------------
       Resolution: Fixed
         Assignee: Hyukjin Kwon
    Fix Version/s: 2.4.0
                   2.3.2

> Complex type and binary type in in-memory partition pruning does not work due 
> to missing upper/lower bounds cases
> -----------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-24934
>                 URL: https://issues.apache.org/jira/browse/SPARK-24934
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.4.0
>            Reporter: Hyukjin Kwon
>            Assignee: Hyukjin Kwon
>            Priority: Critical
>              Labels: correctness
>             Fix For: 2.3.2, 2.4.0
>
>
> For example, if array is used (where the lower and upper bounds for its 
> column batch are {{null}})), it looks wrongly filtering all data out:
> {code}
> scala> import org.apache.spark.sql.functions
> import org.apache.spark.sql.functions
> scala> val df = Seq(Array("a", "b"), Array("c", "d")).toDF("arrayCol")
> df: org.apache.spark.sql.DataFrame = [arrayCol: array<string>]
> scala> 
> df.filter(df.col("arrayCol").eqNullSafe(functions.array(functions.lit("a"), 
> functions.lit("b")))).show()
> +--------+
> |arrayCol|
> +--------+
> |  [a, b]|
> +--------+
> scala> 
> df.cache().filter(df.col("arrayCol").eqNullSafe(functions.array(functions.lit("a"),
>  functions.lit("b")))).show()
> +--------+
> |arrayCol|
> +--------+
> +--------+
> {code}



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to