[ https://issues.apache.org/jira/browse/SPARK-1867?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14232181#comment-14232181 ]
Anson Abraham commented on SPARK-1867: -------------------------------------- interesting. so it's possible spark-shell itself was compiled w/ an older version of the jdk ... though i "downgraded" the jdk to 6 and i was still getting the same error. > Spark Documentation Error causes java.lang.IllegalStateException: unread > block data > ----------------------------------------------------------------------------------- > > Key: SPARK-1867 > URL: https://issues.apache.org/jira/browse/SPARK-1867 > Project: Spark > Issue Type: Bug > Reporter: sam > > I've employed two System Administrators on a contract basis (for quite a bit > of money), and both contractors have independently hit the following > exception. What we are doing is: > 1. Installing Spark 0.9.1 according to the documentation on the website, > along with CDH4 (and another cluster with CDH5) distros of hadoop/hdfs. > 2. Building a fat jar with a Spark app with sbt then trying to run it on the > cluster > I've also included code snippets, and sbt deps at the bottom. > When I've Googled this, there seems to be two somewhat vague responses: > a) Mismatching spark versions on nodes/user code > b) Need to add more jars to the SparkConf > Now I know that (b) is not the problem having successfully run the same code > on other clusters while only including one jar (it's a fat jar). > But I have no idea how to check for (a) - it appears Spark doesn't have any > version checks or anything - it would be nice if it checked versions and > threw a "mismatching version exception: you have user code using version X > and node Y has version Z". > I would be very grateful for advice on this. > The exception: > Exception in thread "main" org.apache.spark.SparkException: Job aborted: Task > 0.0:1 failed 32 times (most recent failure: Exception failure: > java.lang.IllegalStateException: unread block data) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1020) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1018) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1018) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:604) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190) > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) > at akka.actor.ActorCell.invoke(ActorCell.scala:456) > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) > at akka.dispatch.Mailbox.run(Mailbox.scala:219) > at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) > at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > 14/05/16 18:05:31 INFO scheduler.TaskSetManager: Loss was due to > java.lang.IllegalStateException: unread block data [duplicate 59] > My code snippet: > val conf = new SparkConf() > .setMaster(clusterMaster) > .setAppName(appName) > .setSparkHome(sparkHome) > .setJars(SparkContext.jarOfClass(this.getClass)) > println("count = " + new SparkContext(conf).textFile(someHdfsPath).count()) > My SBT dependencies: > // relevant > "org.apache.spark" % "spark-core_2.10" % "0.9.1", > "org.apache.hadoop" % "hadoop-client" % "2.3.0-mr1-cdh5.0.0", > // standard, probably unrelated > "com.github.seratch" %% "awscala" % "[0.2,)", > "org.scalacheck" %% "scalacheck" % "1.10.1" % "test", > "org.specs2" %% "specs2" % "1.14" % "test", > "org.scala-lang" % "scala-reflect" % "2.10.3", > "org.scalaz" %% "scalaz-core" % "7.0.5", > "net.minidev" % "json-smart" % "1.2" -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org