[ https://issues.apache.org/jira/browse/SPARK-25199?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16592704#comment-16592704 ]
Maxim Gekk commented on SPARK-25199: ------------------------------------ I wasn't able to reproduce the issue on the current master: {code} Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.4.0-SNAPSHOT /_/ Using Python version 2.7.15 (default, Aug 22 2018 16:36:18) >>> df = spark.read.format("csv").option("header", >>> "true").option("inferSchema", "true").load("tmp/csv/*.csv") >>> df.printSchema() root |-- a: integer (nullable = true) |-- b: integer (nullable = true) {code} for two csv files but one of them is empty: {code:java} tree -h ./csv ./csv ├── [ 8] 1.csv └── [ 0] 2.csv {code} > InferSchema "all Strings" if one of many CSVs is empty > ------------------------------------------------------ > > Key: SPARK-25199 > URL: https://issues.apache.org/jira/browse/SPARK-25199 > Project: Spark > Issue Type: Bug > Components: Input/Output > Affects Versions: 2.2.1 > Environment: I discovered this on AWS Glue, which uses Spark 2.2.1 > Reporter: Neil McGuigan > Priority: Minor > Labels: newbie > > Spark can load multiple CSV files in one read: > df = spark.read.format("csv").option("header", "true").option("inferSchema", > "true").load("/*.csv") > However, if one of these files is empty (though it has a header), Spark will > set all column types to "String" > Spark should skip a file for inference if it contains no (non-header) rows -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org