[ https://issues.apache.org/jira/browse/SPARK-24523?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16624046#comment-16624046 ]
Ankur Gupta commented on SPARK-24523: ------------------------------------- You are correct [~irashid], it seems "spark-listener-group-appStatus" thread is processing the appStatus events while the main thread is waiting for this thread to finish when this exception occurs. This may not be related to S3 at all. It will be good to know since how long this thread has been processing events, so any logs that provide this information will be useful. Also, it may be helpful to try increasing the number of driver cores in your application. > InterruptedException when closing SparkContext > ---------------------------------------------- > > Key: SPARK-24523 > URL: https://issues.apache.org/jira/browse/SPARK-24523 > Project: Spark > Issue Type: Bug > Components: Scheduler > Affects Versions: 2.3.0, 2.3.1 > Environment: EMR 5.14.0, S3/HDFS inputs and outputs; EMR 5.17 > > > > Reporter: Umayr Hassan > Priority: Major > Attachments: spark-stop-jstack.log.1, spark-stop-jstack.log.2, > spark-stop-jstack.log.3 > > > I'm running a Scala application in EMR with the following properties: > {{--master yarn --deploy-mode cluster --driver-memory 13g --executor-memory > 30g --executor-cores 5 --conf spark.default.parallelism=400 --conf > spark.dynamicAllocation.enabled=true --conf > spark.dynamicAllocation.maxExecutors=20 --conf > spark.eventLog.dir=hdfs:///var/log/spark/apps --conf > spark.eventLog.enabled=true --conf > spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version=2 --conf > spark.scheduler.listenerbus.eventqueue.capacity=20000 --conf > spark.shuffle.service.enabled=true --conf spark.sql.shuffle.partitions=400 > --conf spark.yarn.maxAppAttempts=1}} > The application runs fine till SparkContext is (automatically) closed, at > which point the SparkContext object throws. > {{18/06/10 10:44:43 ERROR Utils: Uncaught exception in thread pool-4-thread-1 > java.lang.InterruptedException at java.lang.Object.wait(Native Method) at > java.lang.Thread.join(Thread.java:1252) at > java.lang.Thread.join(Thread.java:1326) at > org.apache.spark.scheduler.AsyncEventQueue.stop(AsyncEventQueue.scala:133) at > org.apache.spark.scheduler.LiveListenerBus$$anonfun$stop$1.apply(LiveListenerBus.scala:219) > at > org.apache.spark.scheduler.LiveListenerBus$$anonfun$stop$1.apply(LiveListenerBus.scala:219) > at scala.collection.Iterator$class.foreach(Iterator.scala:893) at > scala.collection.AbstractIterator.foreach(Iterator.scala:1336) at > scala.collection.IterableLike$class.foreach(IterableLike.scala:72) at > scala.collection.AbstractIterable.foreach(Iterable.scala:54) at > org.apache.spark.scheduler.LiveListenerBus.stop(LiveListenerBus.scala:219) at > org.apache.spark.SparkContext$$anonfun$stop$6.apply$mcV$sp(SparkContext.scala:1915) > at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1357) at > org.apache.spark.SparkContext.stop(SparkContext.scala:1914) at > org.apache.spark.SparkContext$$anonfun$2.apply$mcV$sp(SparkContext.scala:572) > at org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:216) > at > org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ShutdownHookManager.scala:188) > at > org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188) > at > org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188) > at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1988) at > org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply$mcV$sp(ShutdownHookManager.scala:188) > at > org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188) > at > org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188) > at scala.util.Try$.apply(Try.scala:192) at > org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:188) > at > org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:178) > at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748)}} > > I've not seen this behavior in Spark 2.0.2 and Spark 2.2.0 (for the same > application), so I'm not sure which change is causing Spark 2.3 to throw. Any > ideas? > best, > Umayr -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org