[ https://issues.apache.org/jira/browse/SPARK-22978?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Hyukjin Kwon updated SPARK-22978: --------------------------------- Summary: Register Scalar Vectorized UDFs for SQL Statement (was: Register Vectorized UDFs for SQL Statement) > Register Scalar Vectorized UDFs for SQL Statement > ------------------------------------------------- > > Key: SPARK-22978 > URL: https://issues.apache.org/jira/browse/SPARK-22978 > Project: Spark > Issue Type: Sub-task > Components: PySpark > Affects Versions: 2.3.0 > Reporter: Xiao Li > Assignee: Xiao Li > Priority: Major > Fix For: 2.3.0 > > > Capable of registering vectorized UDFs and then use it in SQL statement. > For example, > {noformat} > >>> import random > >>> from pyspark.sql.types import IntegerType > >>> from pyspark.sql.functions import pandas_udf > >>> random_pandas_udf = pandas_udf( > ... lambda x: random.randint(0, 100) + x, IntegerType()) > ... .asNondeterministic() # doctest: +SKIP > >>> _ = spark.catalog.registerFunction( > ... "random_pandas_udf", random_pandas_udf, IntegerType()) # doctest: > +SKIP > >>> spark.sql("SELECT random_pandas_udf(2)").collect() # doctest: +SKIP > [Row(random_pandas_udf(2)=84)] > {noformat} -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org