[ 
https://issues.apache.org/jira/browse/SPARK-25588?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16642200#comment-16642200
 ] 

Michael Heuer commented on SPARK-25588:
---------------------------------------

I moved the version back to 2.3.2, see
[https://github.com/bigdatagenomics/adam/pull/2055]

and created this more succinct failing unit test
[https://github.com/bigdatagenomics/adam/blob/2551654a284a4efba70aff3a2efa8f5e29bb8ea3/adam-core/src/test/scala/org/bdgenomics/adam/rdd/read/Issue2058Suite.scala]

> SchemaParseException: Can't redefine: list when reading from Parquet
> --------------------------------------------------------------------
>
>                 Key: SPARK-25588
>                 URL: https://issues.apache.org/jira/browse/SPARK-25588
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.3.2
>         Environment: Spark version 2.3.2
>            Reporter: Michael Heuer
>            Priority: Major
>
> In ADAM, a library downstream of Spark, we use Avro to define a schema, 
> generate Java classes from the Avro schema using the avro-maven-plugin, and 
> generate Scala Products from the Avro schema using our own code generation 
> library.
> In the code path demonstrated by the following unit test, we write out to 
> Parquet and read back in using an RDD of Avro-generated Java classes and then 
> write out to Parquet and read back in using a Dataset of Avro-generated Scala 
> Products.
> {code:scala}
>   sparkTest("transform reads to variant rdd") {
>     val reads = sc.loadAlignments(testFile("small.sam"))
>     def checkSave(variants: VariantRDD) {
>       val tempPath = tmpLocation(".adam")
>       variants.saveAsParquet(tempPath)
>       assert(sc.loadVariants(tempPath).rdd.count === 20)
>     }
>     val variants: VariantRDD = reads.transmute[Variant, VariantProduct, 
> VariantRDD](
>       (rdd: RDD[AlignmentRecord]) => {
>         rdd.map(AlignmentRecordRDDSuite.varFn)
>       })
>     checkSave(variants)
>     val sqlContext = SQLContext.getOrCreate(sc)
>     import sqlContext.implicits._
>     val variantsDs: VariantRDD = reads.transmuteDataset[Variant, 
> VariantProduct, VariantRDD](
>       (ds: Dataset[AlignmentRecordProduct]) => {
>         ds.map(r => {
>           VariantProduct.fromAvro(
>             AlignmentRecordRDDSuite.varFn(r.toAvro))
>         })
>       })
>     checkSave(variantsDs)
> }
> {code}
> https://github.com/bigdatagenomics/adam/blob/master/adam-core/src/test/scala/org/bdgenomics/adam/rdd/read/AlignmentRecordRDDSuite.scala#L1540
> Note the schema in Parquet are different:
> RDD code path
> {noformat}
> $ parquet-tools schema 
> /var/folders/m6/4yqn_4q129lbth_dq3qzj_8h0000gn/T/TempSuite3400691035694870641.adam/part-r-00000.gz.parquet
> message org.bdgenomics.formats.avro.Variant {
>   optional binary contigName (UTF8);
>   optional int64 start;
>   optional int64 end;
>   required group names (LIST) {
>     repeated binary array (UTF8);
>   }
>   optional boolean splitFromMultiAllelic;
>   optional binary referenceAllele (UTF8);
>   optional binary alternateAllele (UTF8);
>   optional double quality;
>   optional boolean filtersApplied;
>   optional boolean filtersPassed;
>   required group filtersFailed (LIST) {
>     repeated binary array (UTF8);
>   }
>   optional group annotation {
>     optional binary ancestralAllele (UTF8);
>     optional int32 alleleCount;
>     optional int32 readDepth;
>     optional int32 forwardReadDepth;
>     optional int32 reverseReadDepth;
>     optional int32 referenceReadDepth;
>     optional int32 referenceForwardReadDepth;
>     optional int32 referenceReverseReadDepth;
>     optional float alleleFrequency;
>     optional binary cigar (UTF8);
>     optional boolean dbSnp;
>     optional boolean hapMap2;
>     optional boolean hapMap3;
>     optional boolean validated;
>     optional boolean thousandGenomes;
>     optional boolean somatic;
>     required group transcriptEffects (LIST) {
>       repeated group array {
>         optional binary alternateAllele (UTF8);
>         required group effects (LIST) {
>           repeated binary array (UTF8);
>         }
>         optional binary geneName (UTF8);
>         optional binary geneId (UTF8);
>         optional binary featureType (UTF8);
>         optional binary featureId (UTF8);
>         optional binary biotype (UTF8);
>         optional int32 rank;
>         optional int32 total;
>         optional binary genomicHgvs (UTF8);
>         optional binary transcriptHgvs (UTF8);
>         optional binary proteinHgvs (UTF8);
>         optional int32 cdnaPosition;
>         optional int32 cdnaLength;
>         optional int32 cdsPosition;
>         optional int32 cdsLength;
>         optional int32 proteinPosition;
>         optional int32 proteinLength;
>         optional int32 distance;
>         required group messages (LIST) {
>           repeated binary array (ENUM);
>         }
>       }
>     }
>     required group attributes (MAP) {
>       repeated group map (MAP_KEY_VALUE) {
>         required binary key (UTF8);
>         required binary value (UTF8);
>       }
>     }
>   }
> }
> {noformat}
> Dataset code path:
> {noformat}
> $ parquet-tools schema 
> /var/folders/m6/4yqn_4q129lbth_dq3qzj_8h0000gn/T/TempSuite2879366708769671307.adam/part-00000-b123eb8b-2648-4648-8096-b3de95343141-c000.snappy.parquet
> message spark_schema {
>   optional binary contigName (UTF8);
>   optional int64 start;
>   optional int64 end;
>   optional group names (LIST) {
>     repeated group list {
>       optional binary element (UTF8);
>     }
>   }
>   optional boolean splitFromMultiAllelic;
>   optional binary referenceAllele (UTF8);
>   optional binary alternateAllele (UTF8);
>   optional double quality;
>   optional boolean filtersApplied;
>   optional boolean filtersPassed;
>   optional group filtersFailed (LIST) {
>     repeated group list {
>       optional binary element (UTF8);
>     }
>   }
>   optional group annotation {
>     optional binary ancestralAllele (UTF8);
>     optional int32 alleleCount;
>     optional int32 readDepth;
>     optional int32 forwardReadDepth;
>     optional int32 reverseReadDepth;
>     optional int32 referenceReadDepth;
>     optional int32 referenceForwardReadDepth;
>     optional int32 referenceReverseReadDepth;
>     optional float alleleFrequency;
>     optional binary cigar (UTF8);
>     optional boolean dbSnp;
>     optional boolean hapMap2;
>     optional boolean hapMap3;
>     optional boolean validated;
>     optional boolean thousandGenomes;
>     optional boolean somatic;
>     optional group transcriptEffects (LIST) {
>       repeated group list {
>         optional group element {
>           optional binary alternateAllele (UTF8);
>           optional group effects (LIST) {
>             repeated group list {
>               optional binary element (UTF8);
>             }
>           }
>           optional binary geneName (UTF8);
>           optional binary geneId (UTF8);
>           optional binary featureType (UTF8);
>           optional binary featureId (UTF8);
>           optional binary biotype (UTF8);
>           optional int32 rank;
>           optional int32 total;
>           optional binary genomicHgvs (UTF8);
>           optional binary transcriptHgvs (UTF8);
>           optional binary proteinHgvs (UTF8);
>           optional int32 cdnaPosition;
>           optional int32 cdnaLength;
>           optional int32 cdsPosition;
>           optional int32 cdsLength;
>           optional int32 proteinPosition;
>           optional int32 proteinLength;
>           optional int32 distance;
>           optional group messages (LIST) {
>             repeated group list {
>               optional binary element (UTF8);
>             }
>           }
>         }
>       }
>     }
>     optional group attributes (MAP) {
>       repeated group key_value {
>         required binary key (UTF8);
>         optional binary value (UTF8);
>       }
>     }
>   }
> }
> {noformat}
> With Spark 2.4.0 (RC2), and Parquet dependency version 1.10.0, the Dataset 
> path now fails
> {noformat}
> $ mvn test
> ...
> - transform reads to variant rdd *** FAILED ***
>   org.apache.spark.SparkException: Job aborted due to stage failure:
> Task 0 in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in 
> stage 3.0 (TID 3, localhost, executor driver):
>  org.apache.avro.SchemaParseException: Can't redefine: list
>       at org.apache.avro.Schema$Names.put(Schema.java:1128)
>       at org.apache.avro.Schema$NamedSchema.writeNameRef(Schema.java:562)
>       at org.apache.avro.Schema$RecordSchema.toJson(Schema.java:690)
>       at org.apache.avro.Schema$ArraySchema.toJson(Schema.java:805)
>       at org.apache.avro.Schema$UnionSchema.toJson(Schema.java:882)
>       at org.apache.avro.Schema$RecordSchema.fieldsToJson(Schema.java:716)
>       at org.apache.avro.Schema$RecordSchema.toJson(Schema.java:701)
>       at org.apache.avro.Schema$UnionSchema.toJson(Schema.java:882)
>       at org.apache.avro.Schema$RecordSchema.fieldsToJson(Schema.java:716)
>       at org.apache.avro.Schema$RecordSchema.toJson(Schema.java:701)
>       at org.apache.avro.Schema.toString(Schema.java:324)
>       at 
> org.apache.avro.SchemaCompatibility.checkReaderWriterCompatibility(SchemaCompatibility.java:68)
>       at 
> org.apache.parquet.avro.AvroRecordConverter.isElementType(AvroRecordConverter.java:866)
>       at 
> org.apache.parquet.avro.AvroIndexedRecordConverter$AvroArrayConverter.<init>(AvroIndexedRecordConverter.java:333)
>       at 
> org.apache.parquet.avro.AvroIndexedRecordConverter.newConverter(AvroIndexedRecordConverter.java:172)
>       at 
> org.apache.parquet.avro.AvroIndexedRecordConverter.<init>(AvroIndexedRecordConverter.java:94)
>       at 
> org.apache.parquet.avro.AvroIndexedRecordConverter.newConverter(AvroIndexedRecordConverter.java:168)
>       at 
> org.apache.parquet.avro.AvroIndexedRecordConverter.<init>(AvroIndexedRecordConverter.java:94)
>       at 
> org.apache.parquet.avro.AvroIndexedRecordConverter.<init>(AvroIndexedRecordConverter.java:66)
>       at 
> org.apache.parquet.avro.AvroCompatRecordMaterializer.<init>(AvroCompatRecordMaterializer.java:34)
>       at 
> org.apache.parquet.avro.AvroReadSupport.newCompatMaterializer(AvroReadSupport.java:144)
>       at 
> org.apache.parquet.avro.AvroReadSupport.prepareForRead(AvroReadSupport.java:136)
>       at 
> org.apache.parquet.hadoop.InternalParquetRecordReader.initialize(InternalParquetRecordReader.java:204)
>       at 
> org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:182)
>       at 
> org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140)
>       at 
> org.apache.spark.rdd.NewHadoopRDD$$anon$1.liftedTree1$1(NewHadoopRDD.scala:199)
>       at 
> org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:196)
>       at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:151)
>       at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:70)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
>       at org.apache.spark.scheduler.Task.run(Task.scala:121)
>       at 
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
>       at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>       at java.lang.Thread.run(Thread.java:748)
> 2018-09-29 21:39:47 ERROR TaskSetManager:70 - Task 0 in stage 3.0 failed 1 
> times; aborting job
>   at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1866)
>   at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>   at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>   at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1866)
>   at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
>   at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
>   at scala.Option.foreach(Option.scala:257)
>   at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
>   at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2100)
>   at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2049)
>   at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2038)
>   at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
>   at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
>   at org.apache.spark.rdd.RDD.count(RDD.scala:1168)
>   at 
> org.bdgenomics.adam.rdd.read.AlignmentRecordRDDSuite$$anonfun$78.checkSave$6(AlignmentRecordRDDSuite.scala:1551)
>   at 
> org.bdgenomics.adam.rdd.read.AlignmentRecordRDDSuite$$anonfun$78.apply$mcV$sp(AlignmentRecordRDDSuite.scala:1579)
>   at 
> org.bdgenomics.utils.misc.SparkFunSuite$$anonfun$sparkTest$1.apply$mcV$sp(SparkFunSuite.scala:102)
>   at 
> org.bdgenomics.utils.misc.SparkFunSuite$$anonfun$sparkTest$1.apply(SparkFunSuite.scala:98)
>   at 
> org.bdgenomics.utils.misc.SparkFunSuite$$anonfun$sparkTest$1.apply(SparkFunSuite.scala:98)
>   at 
> org.scalatest.Transformer$$anonfun$apply$1.apply$mcV$sp(Transformer.scala:22)
>   at org.scalatest.OutcomeOf$class.outcomeOf(OutcomeOf.scala:85)
>   at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
>   at org.scalatest.Transformer.apply(Transformer.scala:22)
>   at org.scalatest.Transformer.apply(Transformer.scala:20)
>   at org.scalatest.FunSuiteLike$$anon$1.apply(FunSuiteLike.scala:166)
>   at org.scalatest.Suite$class.withFixture(Suite.scala:1122)
>   at org.scalatest.FunSuite.withFixture(FunSuite.scala:1555)
>   at 
> org.scalatest.FunSuiteLike$class.invokeWithFixture$1(FunSuiteLike.scala:163)
>   at 
> org.scalatest.FunSuiteLike$$anonfun$runTest$1.apply(FunSuiteLike.scala:175)
>   at 
> org.scalatest.FunSuiteLike$$anonfun$runTest$1.apply(FunSuiteLike.scala:175)
>   at org.scalatest.SuperEngine.runTestImpl(Engine.scala:306)
>   at org.scalatest.FunSuiteLike$class.runTest(FunSuiteLike.scala:175)
>   at 
> org.bdgenomics.adam.util.ADAMFunSuite.org$scalatest$BeforeAndAfter$$super$runTest(ADAMFunSuite.scala:24)
>   at org.scalatest.BeforeAndAfter$class.runTest(BeforeAndAfter.scala:200)
>   at org.bdgenomics.adam.util.ADAMFunSuite.runTest(ADAMFunSuite.scala:24)
>   at 
> org.scalatest.FunSuiteLike$$anonfun$runTests$1.apply(FunSuiteLike.scala:208)
>   at 
> org.scalatest.FunSuiteLike$$anonfun$runTests$1.apply(FunSuiteLike.scala:208)
>   at 
> org.scalatest.SuperEngine$$anonfun$traverseSubNodes$1$1.apply(Engine.scala:413)
>   at 
> org.scalatest.SuperEngine$$anonfun$traverseSubNodes$1$1.apply(Engine.scala:401)
>   at scala.collection.immutable.List.foreach(List.scala:392)
>   at org.scalatest.SuperEngine.traverseSubNodes$1(Engine.scala:401)
>   at 
> org.scalatest.SuperEngine.org$scalatest$SuperEngine$$runTestsInBranch(Engine.scala:396)
>   at org.scalatest.SuperEngine.runTestsImpl(Engine.scala:483)
>   at org.scalatest.FunSuiteLike$class.runTests(FunSuiteLike.scala:208)
>   at org.scalatest.FunSuite.runTests(FunSuite.scala:1555)
>   at org.scalatest.Suite$class.run(Suite.scala:1424)
>   at 
> org.scalatest.FunSuite.org$scalatest$FunSuiteLike$$super$run(FunSuite.scala:1555)
>   at org.scalatest.FunSuiteLike$$anonfun$run$1.apply(FunSuiteLike.scala:212)
>   at org.scalatest.FunSuiteLike$$anonfun$run$1.apply(FunSuiteLike.scala:212)
>   at org.scalatest.SuperEngine.runImpl(Engine.scala:545)
>   at org.scalatest.FunSuiteLike$class.run(FunSuiteLike.scala:212)
>   at 
> org.bdgenomics.adam.util.ADAMFunSuite.org$scalatest$BeforeAndAfter$$super$run(ADAMFunSuite.scala:24)
>   at org.scalatest.BeforeAndAfter$class.run(BeforeAndAfter.scala:241)
>   at org.bdgenomics.adam.util.ADAMFunSuite.run(ADAMFunSuite.scala:24)
>   at org.scalatest.tools.SuiteRunner.run(SuiteRunner.scala:55)
>   at 
> org.scalatest.tools.Runner$$anonfun$doRunRunRunDaDoRunRun$3.apply(Runner.scala:2563)
>   at 
> org.scalatest.tools.Runner$$anonfun$doRunRunRunDaDoRunRun$3.apply(Runner.scala:2557)
>   at scala.collection.immutable.List.foreach(List.scala:392)
>   at org.scalatest.tools.Runner$.doRunRunRunDaDoRunRun(Runner.scala:2557)
>   at 
> org.scalatest.tools.Runner$$anonfun$runOptionallyWithPassFailReporter$2.apply(Runner.scala:1044)
>   at 
> org.scalatest.tools.Runner$$anonfun$runOptionallyWithPassFailReporter$2.apply(Runner.scala:1043)
>   at 
> org.scalatest.tools.Runner$.withClassLoaderAndDispatchReporter(Runner.scala:2722)
>   at 
> org.scalatest.tools.Runner$.runOptionallyWithPassFailReporter(Runner.scala:1043)
>   at org.scalatest.tools.Runner$.main(Runner.scala:860)
>   at org.scalatest.tools.Runner.main(Runner.scala)
>   Cause: org.apache.avro.SchemaParseException: Can't redefine: list
>   at org.apache.avro.Schema$Names.put(Schema.java:1128)
>   at org.apache.avro.Schema$NamedSchema.writeNameRef(Schema.java:562)
>   at org.apache.avro.Schema$RecordSchema.toJson(Schema.java:690)
>   at org.apache.avro.Schema$ArraySchema.toJson(Schema.java:805)
>   at org.apache.avro.Schema$UnionSchema.toJson(Schema.java:882)
>   at org.apache.avro.Schema$RecordSchema.fieldsToJson(Schema.java:716)
>   at org.apache.avro.Schema$RecordSchema.toJson(Schema.java:701)
>   at org.apache.avro.Schema$UnionSchema.toJson(Schema.java:882)
>   at org.apache.avro.Schema$RecordSchema.fieldsToJson(Schema.java:716)
>   at org.apache.avro.Schema$RecordSchema.toJson(Schema.java:701)
>   at org.apache.avro.Schema.toString(Schema.java:324)
>   at 
> org.apache.avro.SchemaCompatibility.checkReaderWriterCompatibility(SchemaCompatibility.java:68)
>   at 
> org.apache.parquet.avro.AvroRecordConverter.isElementType(AvroRecordConverter.java:866)
>   at 
> org.apache.parquet.avro.AvroIndexedRecordConverter$AvroArrayConverter.<init>(AvroIndexedRecordConverter.java:333)
>   at 
> org.apache.parquet.avro.AvroIndexedRecordConverter.newConverter(AvroIndexedRecordConverter.java:172)
>   at 
> org.apache.parquet.avro.AvroIndexedRecordConverter.<init>(AvroIndexedRecordConverter.java:94)
>   at 
> org.apache.parquet.avro.AvroIndexedRecordConverter.newConverter(AvroIndexedRecordConverter.java:168)
>   at 
> org.apache.parquet.avro.AvroIndexedRecordConverter.<init>(AvroIndexedRecordConverter.java:94)
>   at 
> org.apache.parquet.avro.AvroIndexedRecordConverter.<init>(AvroIndexedRecordConverter.java:66)
>   at 
> org.apache.parquet.avro.AvroCompatRecordMaterializer.<init>(AvroCompatRecordMaterializer.java:34)
>   at 
> org.apache.parquet.avro.AvroReadSupport.newCompatMaterializer(AvroReadSupport.java:144)
>   at 
> org.apache.parquet.avro.AvroReadSupport.prepareForRead(AvroReadSupport.java:136)
>   at 
> org.apache.parquet.hadoop.InternalParquetRecordReader.initialize(InternalParquetRecordReader.java:204)
>   at 
> org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:182)
>   at 
> org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140)
>   at 
> org.apache.spark.rdd.NewHadoopRDD$$anon$1.liftedTree1$1(NewHadoopRDD.scala:199)
>   at org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:196)
>   at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:151)
>   at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:70)
>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
>   at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
>   at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
>   at org.apache.spark.scheduler.Task.run(Task.scala:121)
>   at 
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
>   at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
>   at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
>   at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>   at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>   at java.lang.Thread.run(Thread.java:748)
> {noformat}
> Regression from Spark version 2.3.1.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to