[ 
https://issues.apache.org/jira/browse/SPARK-25871?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Marcelo Vanzin reassigned SPARK-25871:
--------------------------------------

    Assignee: Imran Rashid

> Streaming WAL should not use hdfs erasure coding, regardless of FS defaults
> ---------------------------------------------------------------------------
>
>                 Key: SPARK-25871
>                 URL: https://issues.apache.org/jira/browse/SPARK-25871
>             Project: Spark
>          Issue Type: Improvement
>          Components: DStreams
>    Affects Versions: 2.4.0
>            Reporter: Imran Rashid
>            Assignee: Imran Rashid
>            Priority: Major
>             Fix For: 3.0.0
>
>
> The {{FileBasedWriteAheadLogWriter}} expects the output stream for the WAL to 
> support {{hflush()}}, but hdfs erasure coded files do not support that.
> https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html#Limitations
> otherwise you get exceptions like:
> {noformat}
> 17/10/17 17:31:34 ERROR executor.Executor: Exception in task 0.2 in stage 6.0 
> (TID 85)
> org.apache.spark.SparkException: Could not read data from write ahead log 
> record 
> FileBasedWriteAheadLogSegment(hdfs://quasar-yxckyb-1.vpc.cloudera.com:8020/tmp/__spark__a10be3a3-85ec-4d4f-8782-a4760df4cc4c/88657/checkpoints/receivedData/0/log-1508286672978-1508286732978,1321921,189000)
>       at 
> org.apache.spark.streaming.rdd.WriteAheadLogBackedBlockRDD.org$apache$spark$streaming$rdd$WriteAheadLogBackedBlockRDD$$getBlockFromWriteAheadLog$1(WriteAheadLogBackedBlockRDD.scala:145)
>       at 
> org.apache.spark.streaming.rdd.WriteAheadLogBackedBlockRDD$$anonfun$compute$1.apply(WriteAheadLogBackedBlockRDD.scala:173)
>       at 
> org.apache.spark.streaming.rdd.WriteAheadLogBackedBlockRDD$$anonfun$compute$1.apply(WriteAheadLogBackedBlockRDD.scala:173)
>       at scala.Option.getOrElse(Option.scala:121)
>       at 
> org.apache.spark.streaming.rdd.WriteAheadLogBackedBlockRDD.compute(WriteAheadLogBackedBlockRDD.scala:173)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>       at org.apache.spark.scheduler.Task.run(Task.scala:108)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>       at java.lang.Thread.run(Thread.java:745)
> Caused by: java.io.EOFException: Cannot seek after EOF
>       at 
> org.apache.hadoop.hdfs.DFSStripedInputStream.seek(DFSStripedInputStream.java:331)
>       at 
> org.apache.hadoop.fs.FSDataInputStream.seek(FSDataInputStream.java:65)
>       at 
> org.apache.spark.streaming.util.FileBasedWriteAheadLogRandomReader.read(FileBasedWriteAheadLogRandomReader.scala:37)
>       at 
> org.apache.spark.streaming.util.FileBasedWriteAheadLog.read(FileBasedWriteAheadLog.scala:120)
>       at 
> org.apache.spark.streaming.rdd.WriteAheadLogBackedBlockRDD.org$apache$spark$streaming$rdd$WriteAheadLogBackedBlockRDD$$getBlockFromWriteAheadLog$1(WriteAheadLogBackedBlockRDD.scala:142)
>       ... 18 more
> {noformat}
> HDFS allows you to force a file to be replicated, regardless of the FS 
> defaults -- we should do that for the WAL.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to