liupengcheng created SPARK-26689:
------------------------------------

             Summary: Bad disk causing broadcast failure
                 Key: SPARK-26689
                 URL: https://issues.apache.org/jira/browse/SPARK-26689
             Project: Spark
          Issue Type: Bug
          Components: Spark Core
    Affects Versions: 2.4.0, 2.1.0
         Environment: Spark on Yarn

Mutliple Disk
            Reporter: liupengcheng


We encoutered an application failure in our production cluster which caused by 
the bad disk problems. It will incur application failure.
{code:java}
Job aborted due to stage failure: Task serialization failed: 
java.io.IOException: Failed to create local dir in 
/home/work/hdd5/yarn/c3prc-hadoop/nodemanager/usercache/h_user_profile/appcache/application_1463372393999_144979/blockmgr-1f96b724-3e16-4c09-8601-1a2e3b758185/3b.
org.apache.spark.storage.DiskBlockManager.getFile(DiskBlockManager.scala:73)
org.apache.spark.storage.DiskStore.contains(DiskStore.scala:173)
org.apache.spark.storage.BlockManager.org$apache$spark$storage$BlockManager$$getCurrentBlockStatus(BlockManager.scala:391)
org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:801)
org.apache.spark.storage.BlockManager.putIterator(BlockManager.scala:629)
org.apache.spark.storage.BlockManager.putSingle(BlockManager.scala:987)
org.apache.spark.broadcast.TorrentBroadcast.writeBlocks(TorrentBroadcast.scala:99)
org.apache.spark.broadcast.TorrentBroadcast.<init>(TorrentBroadcast.scala:85)
org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:34)
org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:63)
org.apache.spark.SparkContext.broadcast(SparkContext.scala:1332)
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:863)
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskCompletion$14$$anonfun$apply$1.apply$mcVI$sp(DAGScheduler.scala:1090)
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskCompletion$14$$anonfun$apply$1.apply(DAGScheduler.scala:1086)
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskCompletion$14$$anonfun$apply$1.apply(DAGScheduler.scala:1086)
scala.Option.foreach(Option.scala:236)
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskCompletion$14.apply(DAGScheduler.scala:1086)
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskCompletion$14.apply(DAGScheduler.scala:1085)
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:1085)
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1528)
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1493)
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1482)
org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
{code}
We have multiple disk on our cluster nodes, however, it still fails. I think 
it's because spark does not handle bad disk in `DiskBlockManager` currently. 

Actually, we can handle bad disk in multiple disk environment to avoid 
application failure.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to