Max Xie created SPARK-27267: -------------------------------- Summary: spark 2.4 use 1.1.7.x snappy-java, but its behavior is different from 1.1.2.x Key: SPARK-27267 URL: https://issues.apache.org/jira/browse/SPARK-27267 Project: Spark Issue Type: Bug Components: Block Manager, Spark Core Affects Versions: 2.4.0 Environment: spark.rdd.compress=true
spark.io.compression.codec =snappy spark 2.4 in hadoop 2.6 with hive Reporter: Max Xie I use pyspark like that ``` from pyspark.storagelevel import StorageLevel df=spark.sql("select * from xzn.person") df.persist(StorageLevel(False, True, False, False)) df.count() ``` table person is a simple table stored as orc files and some orc files is empty. When I run the query, it throw the error : ``` 19/03/22 21:46:31 INFO MemoryStore:54 - Block rdd_2_1 stored as values in memory (estimated size 0.0 B, free 1662.6 MB) 19/03/22 21:46:31 INFO FileScanRDD:54 - Reading File path: viewfs://name/xzn.db/person/part-00011, range: 0-49, partition values: [empty row] 19/03/22 21:46:31 INFO FileScanRDD:54 - Reading File path: viewfs://name/xzn.db/person/part-00011_copy_1, range: 0-49, partition values: [empty row] 19/03/22 21:46:31 INFO FileScanRDD:54 - Reading File path: viewfs://name/xzn.db/person/part-00012, range: 0-49, partition values: [empty row] 19/03/22 21:46:31 INFO FileScanRDD:54 - Reading File path: viewfs://name/xzn.db/person/part-00012_copy_1, range: 0-49, partition values: [empty row] 19/03/22 21:46:31 INFO FileScanRDD:54 - Reading File path: viewfs://name/xzn.db/person/part-00013, range: 0-49, partition values: [empty row] 19/03/22 21:46:31 ERROR Executor:91 - Exception in task 1.0 in stage 0.0 (TID 1) org.xerial.snappy.SnappyIOException: [EMPTY_INPUT] Cannot decompress empty stream at org.xerial.snappy.SnappyInputStream.readHeader(SnappyInputStream.java:94) at org.xerial.snappy.SnappyInputStream.<init>(SnappyInputStream.java:59) at org.apache.spark.io.SnappyCompressionCodec.compressedInputStream(CompressionCodec.scala:164) at org.apache.spark.serializer.SerializerManager.wrapForCompression(SerializerManager.scala:163) at org.apache.spark.serializer.SerializerManager.dataDeserializeStream(SerializerManager.scala:209) at org.apache.spark.storage.BlockManager.getLocalValues(BlockManager.scala:596) at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:886) at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:335) at org.apache.spark.rdd.RDD.iterator(RDD.scala:286) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324) at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324) at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324) at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324) at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55) at org.apache.spark.scheduler.Task.run(Task.scala:121) at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) ``` After I search it, I find that 1.1.7.x snappy-java 's behavior is different from 1.1.2.x (that spark 2.0.2 use this version). SnappyOutputStream in 1.1.2.x version always writes a snappy header whether or not to write a value, but SnappyOutputStream in 1.1.7.x don't generate header if u don't write value into it, so in spark 2.4 if RDD cache a empty value, memoryStore will not cache any bytes ( no snappy header ), then it will throw the empty error. Maybe we can change SnappyOutputStream to fix it in 1.1.7.x snappy-java, there is my SnappyOutputStream method compressInput code ``` protected void compressInput() throws IOException { // generate header if (!headerWritten) { outputCursor = writeHeader(); headerWritten = true; } if (inputCursor <= 0) { return; // no need to dump } // if (!headerWritten) { // outputCursor = writeHeader(); // headerWritten = true; // } // Compress and dump the buffer content if (!hasSufficientOutputBufferFor(inputCursor)) { dumpOutput(); } writeBlockPreemble(); int compressedSize = Snappy.compress(inputBuffer, 0, inputCursor, outputBuffer, outputCursor + 4); // Write compressed data size writeInt(outputBuffer, outputCursor, compressedSize); outputCursor += 4 + compressedSize; inputCursor = 0; } ``` -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org