[ https://issues.apache.org/jira/browse/SPARK-23191?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16829272#comment-16829272 ]
wuyi commented on SPARK-23191: ------------------------------ [~cloud_fan] Ok, I'll have a deep look after 5.1 holiday. > Workers registration failes in case of network drop > --------------------------------------------------- > > Key: SPARK-23191 > URL: https://issues.apache.org/jira/browse/SPARK-23191 > Project: Spark > Issue Type: Bug > Components: Spark Core > Affects Versions: 1.6.3, 2.2.1, 2.3.0 > Environment: OS:- Centos 6.9(64 bit) > > Reporter: Neeraj Gupta > Priority: Critical > > We have a 3 node cluster. We were facing issues of multiple driver running in > some scenario in production. > On further investigation we were able to reproduce iin both 1.6.3 and 2.2.1 > versions the scenario with following steps:- > # Setup a 3 node cluster. Start master and slaves. > # On any node where the worker process is running block the connections on > port 7077 using iptables. > {code:java} > iptables -A OUTPUT -p tcp --dport 7077 -j DROP > {code} > # After about 10-15 secs we get the error on node that it is unable to > connect to master. > {code:java} > 2018-01-23 12:08:51,639 [rpc-client-1-1] WARN > org.apache.spark.network.server.TransportChannelHandler - Exception in > connection from <servername> > java.io.IOException: Connection timed out > at sun.nio.ch.FileDispatcherImpl.read0(Native Method) > at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39) > at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223) > at sun.nio.ch.IOUtil.read(IOUtil.java:192) > at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380) > at > io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:221) > at > io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:899) > at > io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:275) > at > io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:119) > at > io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:643) > at > io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:566) > at > io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:480) > at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:442) > at > io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:131) > at > io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144) > at java.lang.Thread.run(Thread.java:745) > 2018-01-23 12:08:51,647 [dispatcher-event-loop-0] ERROR > org.apache.spark.deploy.worker.Worker - Connection to master failed! Waiting > for master to reconnect... > 2018-01-23 12:08:51,647 [dispatcher-event-loop-0] ERROR > org.apache.spark.deploy.worker.Worker - Connection to master failed! Waiting > for master to reconnect... > {code} > # Once we get this exception we renable the connections to port 7077 using > {code:java} > iptables -D OUTPUT -p tcp --dport 7077 -j DROP > {code} > # Worker tries to register again with master but is unable to do so. It > gives following error > {code:java} > 2018-01-23 12:08:58,657 [worker-register-master-threadpool-2] WARN > org.apache.spark.deploy.worker.Worker - Failed to connect to master > <servername>:7077 > org.apache.spark.SparkException: Exception thrown in awaitResult: > at > org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205) > at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75) > at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:100) > at org.apache.spark.rpc.RpcEnv.setupEndpointRef(RpcEnv.scala:108) > at > org.apache.spark.deploy.worker.Worker$$anonfun$org$apache$spark$deploy$worker$Worker$$tryRegisterAllMasters$1$$anon$1.run(Worker.scala:241) > at > java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Caused by: java.io.IOException: Failed to connect to <servername>:7077 > at > org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:232) > at > org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:182) > at > org.apache.spark.rpc.netty.NettyRpcEnv.createClient(NettyRpcEnv.scala:197) > at org.apache.spark.rpc.netty.Outbox$$anon$1.call(Outbox.scala:194) > at org.apache.spark.rpc.netty.Outbox$$anon$1.call(Outbox.scala:190) > ... 4 more > Caused by: io.netty.channel.AbstractChannel$AnnotatedConnectException: > Connection timed out: <servername>:7077 > at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method) > at > sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717) > at > io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:257) > at > io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:291) > at > io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:631) > at > io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:566) > at > io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:480) > at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:442) > at > io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:131) > at > io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144) > ... 1 more > 2018-01-23 12:09:03,705 [dispatcher-event-loop-5] ERROR > org.apache.spark.deploy.worker.Worker - Worker registration failed: Duplicate > worker ID > 2018-01-23 12:09:03,705 [dispatcher-event-loop-5] ERROR > org.apache.spark.deploy.worker.Worker - Worker registration failed: Duplicate > worker ID{code} > # The worker state is changed to DEAD in spark UI. As a result of which > duplicate driver is launched. -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org