[ https://issues.apache.org/jira/browse/SPARK-27213?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16829309#comment-16829309 ]
Josh Rosen commented on SPARK-27213: ------------------------------------ Hmm, this must have been fixed relatively recently. For now, I can confirm that the problem still existed as of 5668c42edf20bc577305437622272bf803b6019e (which is what I happen to have checked out locally; that commit landed in master on March 5, 2019). It'd be good to try the reproduction the latest 2.4.x and 2.3.x maintenance releases to see if those still have the bug. > Unexpected results when filter is used after distinct > ----------------------------------------------------- > > Key: SPARK-27213 > URL: https://issues.apache.org/jira/browse/SPARK-27213 > Project: Spark > Issue Type: Bug > Components: PySpark > Affects Versions: 2.3.2, 2.4.0 > Reporter: Rinaz Belhaj > Priority: Major > Labels: correctness, distinct, filter > > The following code gives unexpected output due to the filter not getting > pushed down in catalyst optimizer. > {code:java} > df = > spark.createDataFrame([['a','123','12.3','n'],['a','123','12.3','y'],['a','123','12.4','y']],['x','y','z','y_n']) > df.show(5) > df.filter("y_n='y'").select('x','y','z').distinct().show() > df.select('x','y','z').distinct().filter("y_n='y'").show() > {code} > {panel:title=Output} > |x|y|z|y_n| > |a|123|12.3|n| > |a|123|12.3|y| > |a|123|12.4|y| > > |x|y|z| > |a|123|12.3| > |a|123|12.4| > > |x|y|z| > |a|123|12.4| > {panel} > Ideally, the second statement should result in an error since the column used > in the filter is not present in the preceding select statement. But the > catalyst optimizer is using first() on column y_n and then applying the > filter. > Even if the filter was pushed down, the result would have been accurate. > {code:java} > df = > spark.createDataFrame([['a','123','12.3','n'],['a','123','12.3','y'],['a','123','12.4','y']],['x','y','z','y_n']) > df.filter("y_n='y'").select('x','y','z').distinct().explain(True) > df.select('x','y','z').distinct().filter("y_n='y'").explain(True) > {code} > {panel:title=Output} > > == Parsed Logical Plan == > Deduplicate [x#74, y#75, z#76|#74, y#75, z#76] > +- AnalysisBarrier > +- Project [x#74, y#75, z#76|#74, y#75, z#76] > +- Filter (y_n#77 = y) > +- LogicalRDD [x#74, y#75, z#76, y_n#77|#74, y#75, z#76, y_n#77], false > > == Analyzed Logical Plan == > x: string, y: string, z: string > Deduplicate [x#74, y#75, z#76|#74, y#75, z#76] > +- Project [x#74, y#75, z#76|#74, y#75, z#76] > +- Filter (y_n#77 = y) > +- LogicalRDD [x#74, y#75, z#76, y_n#77|#74, y#75, z#76, y_n#77], false > > == Optimized Logical Plan == > Aggregate [x#74, y#75, z#76|#74, y#75, z#76], [x#74, y#75, z#76|#74, y#75, > z#76] > +- Project [x#74, y#75, z#76|#74, y#75, z#76] > +- Filter (isnotnull(y_n#77) && (y_n#77 = y)) > +- LogicalRDD [x#74, y#75, z#76, y_n#77|#74, y#75, z#76, y_n#77], false > > == Physical Plan == > *(2) HashAggregate(keys=[x#74, y#75, z#76|#74, y#75, z#76], functions=[], > output=[x#74, y#75, z#76|#74, y#75, z#76]) > +- Exchange hashpartitioning(x#74, y#75, z#76, 10) > +- *(1) HashAggregate(keys=[x#74, y#75, z#76|#74, y#75, z#76], functions=[], > output=[x#74, y#75, z#76|#74, y#75, z#76]) > +- *(1) Project [x#74, y#75, z#76|#74, y#75, z#76] > +- *(1) Filter (isnotnull(y_n#77) && (y_n#77 = y)) > +- Scan ExistingRDD[x#74,y#75,z#76,y_n#77|#74,y#75,z#76,y_n#77] > > > ------------------------------------------------------------------------------------------------------------------- > > > == Parsed Logical Plan == > 'Filter ('y_n = y) > +- AnalysisBarrier > +- Deduplicate [x#74, y#75, z#76|#74, y#75, z#76] > +- Project [x#74, y#75, z#76|#74, y#75, z#76] > +- LogicalRDD [x#74, y#75, z#76, y_n#77|#74, y#75, z#76, y_n#77], false > > == Analyzed Logical Plan == > x: string, y: string, z: string > Project [x#74, y#75, z#76|#74, y#75, z#76] > +- Filter (y_n#77 = y) > +- Deduplicate [x#74, y#75, z#76|#74, y#75, z#76] > +- Project [x#74, y#75, z#76, y_n#77|#74, y#75, z#76, y_n#77] > +- LogicalRDD [x#74, y#75, z#76, y_n#77|#74, y#75, z#76, y_n#77], false > > == Optimized Logical Plan == > Project [x#74, y#75, z#76|#74, y#75, z#76] > +- Filter (isnotnull(y_n#77) && (y_n#77 = y)) > +- Aggregate [x#74, y#75, z#76|#74, y#75, z#76], [x#74, y#75, z#76, > first(y_n#77, false) AS y_n#77|#74, y#75, z#76, first(y_n#77, false) AS > y_n#77] > +- LogicalRDD [x#74, y#75, z#76, y_n#77|#74, y#75, z#76, y_n#77], false > > == Physical Plan == > *(3) Project [x#74, y#75, z#76|#74, y#75, z#76] > +- *(3) Filter (isnotnull(y_n#77) && (y_n#77 = y)) > +- SortAggregate(key=[x#74, y#75, z#76|#74, y#75, z#76], > functions=[first(y_n#77, false)|#77, false)], output=[x#74, y#75, z#76, > y_n#77|#74, y#75, z#76, y_n#77]) > +- *(2) Sort [x#74 ASC NULLS FIRST, y#75 ASC NULLS FIRST, z#76 ASC NULLS > FIRST|#74 ASC NULLS FIRST, y#75 ASC NULLS FIRST, z#76 ASC NULLS FIRST], > false, 0 > +- Exchange hashpartitioning(x#74, y#75, z#76, 10) > +- SortAggregate(key=[x#74, y#75, z#76|#74, y#75, z#76], > functions=[partial_first(y_n#77, false)|#77, false)], output=[x#74, y#75, > z#76, first#95, valueSet#96|#74, y#75, z#76, first#95, valueSet#96]) > +- *(1) Sort [x#74 ASC NULLS FIRST, y#75 ASC NULLS FIRST, z#76 ASC NULLS > FIRST|#74 ASC NULLS FIRST, y#75 ASC NULLS FIRST, z#76 ASC NULLS FIRST], > false, 0 > +- Scan ExistingRDD[x#74,y#75,z#76,y_n#77|#74,y#75,z#76,y_n#77] > > {panel} > The second query. ie > *"df.select('x','y','z').distinct().filter("y_n='y'").explain(True)"* should > result in error rather than giving wrong output. -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org