[ https://issues.apache.org/jira/browse/SPARK-27621?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Sean Owen resolved SPARK-27621. ------------------------------- Resolution: Fixed Fix Version/s: 2.4.4 2.3.4 3.0.0 Issue resolved by pull request 24509 [https://github.com/apache/spark/pull/24509] > Calling transform() method on a LinearRegressionModel throws > NoSuchElementException > ----------------------------------------------------------------------------------- > > Key: SPARK-27621 > URL: https://issues.apache.org/jira/browse/SPARK-27621 > Project: Spark > Issue Type: Bug > Components: ML > Affects Versions: 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2 > Reporter: Anca Sarb > Assignee: Anca Sarb > Priority: Minor > Fix For: 3.0.0, 2.3.4, 2.4.4 > > Original Estimate: 2h > Remaining Estimate: 2h > > When transform(...) method is called on a LinearRegressionModel created > directly with the coefficients and intercepts, the following exception is > encountered. > {code:java} > java.util.NoSuchElementException: Failed to find a default value for loss at > org.apache.spark.ml.param.Params$$anonfun$getOrDefault$2.apply(params.scala:780) > at > org.apache.spark.ml.param.Params$$anonfun$getOrDefault$2.apply(params.scala:780) > at scala.Option.getOrElse(Option.scala:121) at > org.apache.spark.ml.param.Params$class.getOrDefault(params.scala:779) at > org.apache.spark.ml.PipelineStage.getOrDefault(Pipeline.scala:42) at > org.apache.spark.ml.param.Params$class.$(params.scala:786) at > org.apache.spark.ml.PipelineStage.$(Pipeline.scala:42) at > org.apache.spark.ml.regression.LinearRegressionParams$class.validateAndTransformSchema(LinearRegression.scala:111) > at > org.apache.spark.ml.regression.LinearRegressionModel.validateAndTransformSchema(LinearRegression.scala:637) > at org.apache.spark.ml.PredictionModel.transformSchema(Predictor.scala:192) > at > org.apache.spark.ml.PipelineModel$$anonfun$transformSchema$5.apply(Pipeline.scala:311) > at > org.apache.spark.ml.PipelineModel$$anonfun$transformSchema$5.apply(Pipeline.scala:311) > at > scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:57) > at > scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:66) > at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:186) at > org.apache.spark.ml.PipelineModel.transformSchema(Pipeline.scala:311) at > org.apache.spark.ml.PipelineStage.transformSchema(Pipeline.scala:74) at > org.apache.spark.ml.PipelineModel.transform(Pipeline.scala:305) > {code} > This is because validateAndTransformSchema() is called both during training > and scoring phases, but the checks against the training related params like > loss should really be performed during training phase only, I think, please > correct me if I'm missing anything. > This issue was first reported for mleap > ([combust/mleap#455|https://github.com/combust/mleap/issues/455]) because > basically when we serialize the Spark transformers for mleap, we only > serialize the params that are relevant for scoring. We do have the option to > de-serialize the serialized transformers back into Spark for scoring again, > but in that case, we no longer have all the training params. > Test to reproduce in PR: [https://github.com/apache/spark/pull/24509] > -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org