[ https://issues.apache.org/jira/browse/SPARK-28016?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Ruslan Yushchenko updated SPARK-28016: -------------------------------------- Attachment: NestedOps.scala > Spark hangs when an execution plan has many projections on nested structs > ------------------------------------------------------------------------- > > Key: SPARK-28016 > URL: https://issues.apache.org/jira/browse/SPARK-28016 > Project: Spark > Issue Type: Bug > Components: Optimizer > Affects Versions: 2.4.3 > Environment: Tried in > * Spark 2.2.1, Spark 2.4.3 in local mode on Linux, MasOS and Windows > * Spark 2.4.3 / Yarn on a Linux cluster > Reporter: Ruslan Yushchenko > Priority: Major > Attachments: NestedOps.scala, SparkApp1Issue.scala, > SparkApp2Workaround.scala, spark-app-nested.tgz > > > Spark applications freeze on execution plan optimization stage (Catalyst) > when a logical execution plan contains a lot of projections that operate on > nested struct fields. > 2 Spark Applications are attached. One demonstrates the issue, the other > demonstrates a workaround. Also, an archive is attached where these jobs are > packages as a Maven Project. > To reproduce the attached Spark App does the following: > * A small dataframe is created from a JSON example. > * A nested withColumn map transformation is used to apply a transformation > on a struct field and create a new struct field. The code for this > transformation is also attached. > * Once more than 11 such transformations are applied the Catalyst optimizer > freezes on optimizing the execution plan > {code:scala} > package za.co.absa.spark.app > import org.apache.spark.sql._ > import org.apache.spark.sql.functions._ > object SparkApp1Issue { > // A sample data for a dataframe with nested structs > val sample = > """ > |{ > | "strings": { > | "simple": "Culpa repellat nesciunt accusantium", > | "all_random": "DESebo8d%fL9sX@AzVin", > | "whitespaces": " q bb l " > | }, > | "numerics": { > | "small_positive": 722, > | "small_negative": -660, > | "big_positive": 669223368251997, > | "big_negative": -161176863305841, > | "zero": 0 > | } > |} > """.stripMargin :: > """{ > | "strings": { > | "simple": "Accusamus quia vel deleniti", > | "all_random": "rY&n9UnVcD*KS]jPBpa[", > | "whitespaces": " t e t rp z p" > | }, > | "numerics": { > | "small_positive": 268, > | "small_negative": -134, > | "big_positive": 768990048149640, > | "big_negative": -684718954884696, > | "zero": 0 > | } > |} > |""".stripMargin :: > """{ > | "strings": { > | "simple": "Quia numquam deserunt delectus rem est", > | "all_random": "GmRdQlE4Avn1hSlVPAH", > | "whitespaces": " c sa yv drf " > | }, > | "numerics": { > | "small_positive": 909, > | "small_negative": -363, > | "big_positive": 592517494751902, > | "big_negative": -703224505589638, > | "zero": 0 > | } > |} > |""".stripMargin :: Nil > /** > * This Spark Job demonstrates an issue of execution plan freezing when > there are a lot of projections > * involving nested structs in an execution plan. > * > * The example works as follows: > * - A small dataframe is created from a JSON example above > * - A nested withColumn map transformation is used to apply a > transformation on a struct field and create > * a new struct field. > * - Once more than 11 such transformations are applied the Catalyst > optimizer freezes on optimizing > * the execution plan > */ > def main(args: Array[String]): Unit = { > val sparkBuilder = SparkSession.builder().appName("Nested Projections > Issue") > val spark = sparkBuilder > .master("local[4]") > .getOrCreate() > import spark.implicits._ > import za.co.absa.spark.utils.NestedOps.DataSetWrapper > val df = spark.read.json(sample.toDS) > // Apply several uppercase and negation transformations > val dfOutput = df > .nestedWithColumnMap("strings.simple", "strings.uppercase1", c => > upper(c)) > .nestedWithColumnMap("strings.all_random", "strings.uppercase2", c => > upper(c)) > .nestedWithColumnMap("strings.whitespaces", "strings.uppercase3", c => > upper(c)) > .nestedWithColumnMap("numerics.small_positive", "numerics.num1", c => > -c) > .nestedWithColumnMap("numerics.small_negative", "numerics.num2", c => > -c) > .nestedWithColumnMap("numerics.big_positive", "numerics.num3", c => -c) > .nestedWithColumnMap("numerics.big_negative", "numerics.num4", c => -c) > .nestedWithColumnMap("numerics.small_positive", "numerics.num5", c => > -c) > .nestedWithColumnMap("numerics.small_negative", "numerics.num6", c => > -c) > .nestedWithColumnMap("numerics.big_positive", "numerics.num7", c => -c) > .nestedWithColumnMap("numerics.big_negative", "numerics.num8", c => -c) > // Uncommenting the line below will cause Catalyst to freeze completely > //.nestedWithColumnMap("numerics.big_negative", "numerics.num9", c => > -c) > dfOutput.printSchema() > dfOutput.explain(true) > dfOutput.show > } > } > {code} -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org