eneriwrt created SPARK-28222: -------------------------------- Summary: Feature importance outputs different values in GBT and Random Forest in 2.3.3 and 2.4 pyspark version Key: SPARK-28222 URL: https://issues.apache.org/jira/browse/SPARK-28222 Project: Spark Issue Type: Bug Components: ML Affects Versions: 2.4.3, 2.4.2, 2.4.1, 2.4.0 Reporter: eneriwrt
Feature importance values obtained in a binary classification project outputs different values if 2.3.3 version used or 2.4.0. It happens in Random Forest and GBT. As an example: *SPARK 2.4* MODEL RandomForestClassifier_gini [0.0, 0.4117930839002269, 0.06894132653061226, 0.15857667209786705, 0.2974447311021076, 0.06324418636918638] MODEL RandomForestClassifier_entropy [0.0, 0.3864372497988694, 0.06578883597468652, 0.17433924485055197, 0.31754597164210124, 0.055888697733790925] MODEL GradientBoostingClassifier [0.0, 0.7555555555555556, 0.24444444444444438, 0.0, 1.4602196686471875e-17, 0.0] *SPARK 2.3.3* MODEL RandomForestClassifier_gini [0.0, 0.40957086167800455, 0.06894132653061226, 0.16413222765342259, 0.2974447311021076, 0.05991085303585305] MODEL RandomForestClassifier_entropy [0.0, 0.3864372497988694, 0.06578883597468652, 0.18789704501922055, 0.30398817147343266, 0.055888697733790925] MODEL GradientBoostingClassifier [0.0, 0.7555555555555555, 0.24444444444444438, 0.0, 2.4326753518951276e-17, 0.0] -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org